login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354019
G.f. A(x) satisfies: A(x)^3 = 36*x + 1/A(x)^3.
0
1, 6, 18, -288, -1890, 41472, 324324, -7962624, -67343562, 1751777280, 15489019260, -417368899584, -3797625904020, 104791699095552, 972776481568200, -27305722735755264, -257250740550710490, 7314721255213498368, 69699818292739559820
OFFSET
0,2
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies:
(1) A(x)^3 = 18*x + sqrt(1 + 324*x^2).
(2) A(x)^3 = 36*x + 1/A(x)^3.
(3) A(x)^3 = x / Series_Reversion( x/sqrt(1 - 36*x) ).
(4) A(x) = 1/(1 - 36*x/A(x)^3)^(1/6).
(5) A( x/sqrt(1 - 36*x) ) = 1/(1 - 36*x)^(1/6).
(6) A(x)*A(-x) = 1.
(7) A'(x) = 6*A(x) / sqrt(1 + 324*x^2).
(8) A(x) = exp( Integral 6/sqrt(1 + 324*x^2) dx ).
a(n) ~ cos(Pi*(n/2 - 2/3)) * 2^(n + 1/2) * 3^(2*n - 1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, May 15 2022
D-finite with recurrence n*(n-1)*a(n) +36*(3*n-5)*(3*n-7)*a(n-2)=0. - R. J. Mathar, Jan 25 2023
EXAMPLE
G.f.: A(x) = 1 + 6*x + 18*x^2 - 288*x^3 - 1890*x^4 + 41472*x^5 + 324324*x^6 - 7962624*x^7 - 67343562*x^8 + ...
where A(x)^3 = 36*x + 1/A(x)^3, as seen by comparing the following series:
A(x)^3 = 1 + 18*x + 162*x^2 - 13122*x^4 + 2125764*x^6 - 430467210*x^8 + 97629963228*x^10 + ...
1/A(x)^3 = 1 - 18*x + 162*x^2 - 13122*x^4 + 2125764*x^6 - 430467210*x^8 + ...
PROG
(PARI) my(x='x+O('x^22)); Vec((18*x + sqrt(1 + 324*x^2))^(1/3))
(PARI) {a(n) = my(A = (18*x + sqrt(1 + 324*x^2 +x*O(x^n)) )^(1/3)); polcoeff(A, n)}
for(n=0, 21, print1(a(n), ", "))
(PARI) {a(n) = my(A = (x / serreverse( x/sqrt(1 - 36*x +x*O(x^n)) ))^(1/3)); polcoeff(A, n)}
for(n=0, 21, print1(a(n), ", "))
(PARI) {a(n) = my(A = exp( intformal( 6/sqrt(1 + 324*x^2 +x*O(x^n)) ))); polcoeff(A, n)}
for(n=0, 21, print1(a(n), ", "))
CROSSREFS
Sequence in context: A377532 A059944 A052139 * A052682 A214592 A372522
KEYWORD
sign
AUTHOR
Paul D. Hanna, May 14 2022
STATUS
approved