OFFSET
0,3
COMMENTS
Related to the exact solution of the logistic equation with r = -2.
Denominators of Maclaurin series coefficients of (sqrt(n) + 1)/2*exp(x/sqrt(n)) - (sqrt(n) - 1)/2*exp(-x/sqrt(n)) = 1 + x + x^2/(n*2!) + x^3/(n*3!) + x^4/(n^2*4!) + x^5/(n^2*5!) + ... when n = 3. Cf. A268363 (case n = 2). - Peter Bala, Aug 06 2019
LINKS
Eric Weisstein's World of Mathematics, Logistic Equation.
FORMULA
a(n) = 3^floor(n/2)*n! = Product_{k = 1..n} k*(2 - (-1)^(k-1)) = Product_{k = 0..n-1} A165998(k), with empty products set equal to 1. - Peter Bala, Aug 05 2019
a(n) = denominator([x^n] 2*sin(x/sqrt(3) + Pi/6)). Numerator is A057077. - Peter Luschny, Aug 07 2019
MAPLE
gf := 2*sin(x/sqrt(3) + Pi/6): ser := series(gf, x, 20):
seq(denom(coeff(ser, x, n)), n=0..18); # Peter Luschny, Aug 07 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved