login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052682
Expansion of e.g.f. (1-x)/(1-x-3*x^2).
1
1, 0, 6, 18, 288, 2520, 41040, 604800, 11733120, 236234880, 5530291200, 138790713600, 3855483878400, 115075344384000, 3716149018982400, 128239702246656000, 4727462529613824000, 185010460036706304000
OFFSET
0,3
LINKS
FORMULA
E.g.f.: (1-x)/(1 - x - 3*x^2).
Recurrence: a(0)=1, a(1)=0, a(n) = n*a(n-1) + 3*n*(n-1)*a(n-2).
a(n) = (n!/13)*Sum_{alpha=RootOf(-1+Z+3*Z^2)} (-1 + 7*alpha)*alpha^(-1-n).
a(n) = n!*A052533(n). - R. J. Mathar, Nov 27 2011
MAPLE
spec := [S, {S=Sequence(Prod(Z, Sequence(Z), Union(Z, Z, Z)))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
With[{nn=20}, CoefficientList[Series[(1-x)/(1-x-3*x^2), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Jul 15 2020 *)
a[n_]:= a[n]= If[n<2, 1-n, n*a[n-1] +3*n*(n-1)*a[n-2]];
Table[a[n], {n, 0, 40}] (* G. C. Greubel, Jun 04 2022 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( (1-x)/(1-x-3*x^2) ))); // G. C. Greubel, Jun 04 2022
(SageMath) [factorial(n)*sum(binomial(n-k-1, n-2*k)*3^k for k in (0..n//2)) for n in (0..40)] # G. C. Greubel, Jun 04 2022
CROSSREFS
Sequence in context: A059944 A052139 A354019 * A214592 A372522 A130437
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved