login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052684
Expansion of e.g.f. 1/(1-2*x^2-x^3).
1
1, 0, 4, 6, 96, 480, 6480, 60480, 887040, 11975040, 203212800, 3512678400, 69455232000, 1444668825600, 32953394073600, 796373690112000, 20671716409344000, 567677135241216000, 16550136029306880000
OFFSET
0,3
LINKS
FORMULA
E.g.f.: 1/(1 - 2*x^2 - x^3).
D-finite recurrence: a(0)=1, a(1)=0, a(2)=4, a(n) = 2*n*(n-1)*a(n-2) + n*(n-1)*(n-2)*a(n-3).
a(n) = (n!/5)*Sum_{alpha=RootOf(-1+2*Z^2+Z^3)} (-6 + 7*alpha + 8*alpha^2)*alpha^(-1-n).
a(n) = n!*A008346(n). - R. J. Mathar, Nov 27 2011
MAPLE
spec := [S, {S=Sequence(Prod(Z, Union(Z, Z, Prod(Z, Z))))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
With[{nn=20}, CoefficientList[Series[1/(1-2x^2-x^3), {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Apr 22 2012 *)
Table[n!*(Fibonacci[n]+(-1)^n), {n, 0, 40)] (* G. C. Greubel, Jun 03 2022 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( 1/(1-2*x^2-x^3) ))); // G. C. Greubel, Jun 03 2022
(SageMath) [factorial(n)*(fibonacci(n) +(-1)^n) for n in (0..40)] # G. C. Greubel, Jun 03 2022
CROSSREFS
Sequence in context: A222495 A307101 A087934 * A213128 A105037 A139730
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved