OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..350
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 632
FORMULA
E.g.f.: 1/(1 - 2*x^2 - x^3).
D-finite recurrence: a(0)=1, a(1)=0, a(2)=4, a(n) = 2*n*(n-1)*a(n-2) + n*(n-1)*(n-2)*a(n-3).
a(n) = (n!/5)*Sum_{alpha=RootOf(-1+2*Z^2+Z^3)} (-6 + 7*alpha + 8*alpha^2)*alpha^(-1-n).
a(n) = n!*A008346(n). - R. J. Mathar, Nov 27 2011
MAPLE
spec := [S, {S=Sequence(Prod(Z, Union(Z, Z, Prod(Z, Z))))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
With[{nn=20}, CoefficientList[Series[1/(1-2x^2-x^3), {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Apr 22 2012 *)
Table[n!*(Fibonacci[n]+(-1)^n), {n, 0, 40)] (* G. C. Greubel, Jun 03 2022 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( 1/(1-2*x^2-x^3) ))); // G. C. Greubel, Jun 03 2022
(SageMath) [factorial(n)*(fibonacci(n) +(-1)^n) for n in (0..40)] # G. C. Greubel, Jun 03 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved