login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052681
Expansion of e.g.f. (1-x)/(1 - x - x^2 - 2*x^3 + 2*x^4).
1
1, 0, 2, 18, 48, 840, 9360, 90720, 1653120, 25764480, 442713600, 9540115200, 201659673600, 4744989849600, 123531638630400, 3325415917824000, 97123590660096000, 3021564701675520000, 98526128957448192000
OFFSET
0,3
LINKS
FORMULA
E.g.f.: (1-x)/(1 - x - x^2 - 2*x^3 + 2*x^4).
Recurrence: a(0)=1, a(1)=0, a(2)=2, a(3)=18, a(n+4) = (n+4)*a(n+3) + (12 + 7*n + n^2)*a(n+2) + (48 + 52*n + 18*n^2 + 2*n^3)*a(n+1) - 2*(n^4 + 10*n^3 + 35*n^2 + 50*n + 24)*a(n).
a(n) = (n!/353)*Sum_{alpha=RootOf(1 - Z - z^2 - 2*Z^3 + 2*Z^4)} (18 + 106*alpha - 33*alpha^2 - 28*alpha^3)*alpha^(-1-n).
a(n) = n!*A052546(n). - R. J. Mathar, Nov 27 2011
MAPLE
spec := [S, {S=Sequence(Prod(Z, Z, Union(Z, Z, Sequence(Z))))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
With[{nn=20}, CoefficientList[Series[(1-x)/(1-x-x^2-2x^3+2x^4), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, May 23 2014 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Rationals(), 40); Coefficients(R!(Laplace( (1-x)/(1-x-x^2-2*x^3+2*x^4) ))); // G. C. Greubel, Jun 09 2022
(SageMath)
def A052681_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( (1-x)/(1-x-x^2-2*x^3+2*x^4) ).egf_to_ogf().list()
A052681_list(40) # G. C. Greubel, Jun 09 2022
CROSSREFS
Sequence in context: A304933 A126909 A139268 * A208652 A223469 A048910
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved