The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A048910 Indices of 9-gonal numbers that are also square. 2
 1, 2, 18, 49, 529, 1458, 15842, 43681, 474721, 1308962, 14225778, 39225169, 426298609, 1175446098, 12774732482, 35224157761, 382815675841, 1055549286722, 11471695542738, 31631254443889, 343768050606289, 947882084029938, 10301569822645922, 28404831266454241 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS From Ant King, Nov 18 2011: (Start) lim( n -> Infinity, a(2n+1)/a(2n)) = 1/25 * (137 + 36 * sqrt(14)) = 1/25 * (9 + 2 * sqrt(14))^2. lim( n -> Infinity, a(2n)/a(2n-1)) = 1/25 * (39 + 8 * sqrt(14)). (14 * a(n) - 5)^2 - 56 * A048911(n) ^ 2 = 25. (End) LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Eric Weisstein's World of Mathematics, Nonagonal Square Number Index entries for linear recurrences with constant coefficients, signature (1,30,-30,-1,1). FORMULA From Ant King, Nov 18 2011: (Start) a(n) = 30 * a(n - 2) - a(n-4) - 10. a(n) = a(n - 1) + 30 * a(n - 2) - 30 * a(n - 3) - a(n - 4) + a(n - 5). Let p = 9 + 4 * sqrt(2) + sqrt(7) + 2 * sqrt(14) and q = 9 - 4 * sqrt(2) - sqrt(7) + 2 * sqrt(14). Then a(n) = 1/56 * ( ( p - q * (-1) ^ n) * ( 2 * sqrt(2) + sqrt(7))^(n - 1) + ( p + q * (-1)^n) * ( 2 * sqrt(2) - sqrt(7))^n + 20 ). a(n) = ceiling (1/56 * ( p - q * (-1) ^ n) * ( 2 * sqrt(2) + sqrt(7))^(n - 1) ). G.f.: x * (1 + x - 14 * x^2 + x^3 + x^4) / ((1 - x) * (1 - 30 * x^2 + x^4)). (End) MATHEMATICA LinearRecurrence[ {1, 30, - 30, -1, 1 }, {1, 2, 18, 49, 529}, 21 ] (* Ant King, Nov 18 2011 *) PROG (PARI) Vec(-x*(x^4+x^3-14*x^2+x+1)/((x-1)*(x^4-30*x^2+1)) + O(x^50)) \\ Colin Barker, Jun 22 2015 CROSSREFS Cf. A048911, A036411. Sequence in context: A052681 A208652 A223469 * A356712 A077591 A050808 Adjacent sequences: A048907 A048908 A048909 * A048911 A048912 A048913 KEYWORD nonn,easy AUTHOR Eric W. Weisstein STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 00:29 EDT 2024. Contains 372921 sequences. (Running on oeis4.)