login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052139
Denominators of coefficients in function a(x) such that a(a(a(x))) = log (1+x).
2
1, 6, 18, 216, 9720, 9720, 1224720, 29393280, 18895680, 1984046400, 32736765600, 392841187200, 183849675609600, 4211828932147200, 25738954585344000, 8339421285651456000, 21265524278411212800, 437462213727316377600
OFFSET
1,2
REFERENCES
W. C. Yang, Composition equations, preprint, 1999.
FORMULA
a(x)=sum_{n=1,2,3..} A052138(n)/A052139(n)*x^n. - R. J. Mathar, Jun 21 2007
MATHEMATICA
max = 18; f[x_] := Sum[c[k]*x^k, {k, 0, max}]; c[0] = 0; c[1] = 1; s[1] = {}; coes = CoefficientList[ Series[ f[f[f[x]]] - Log[1 + x], {x, 0, max}], x]; eqns = Rest[ Thread[ coes == 0]]; Do[eqns = Rest[eqns] /. s[k]; s[k+1] = Solve[eqns[[1]], c[k + 1]][[1]], {k, 1, max-1}]; Denominator[ Table[c[k], {k, 1, max}] /. Flatten[ Table[s[k], {k, 1, max}]]] (* Jean-François Alcover, Oct 19 2011 *)
T[n_, m_] := T[n, m] = If[n == m, 1, 1/3*(StirlingS1[n, m]*m!/n! - Sum[T[k, m]*Sum[T[n, i]*T[i, k], {i, k, n}], {k, m+1, n-1}] - T[m, m]*Sum[T[n, i]* T[i, m], {i, m+1, n-1}])]; Table[T[n, 1] // Denominator, {n, 1, 21}] (* Jean-François Alcover, Dec 15 2015, after Vladimir Kruchinin *)
CROSSREFS
Cf. A052138. See also A048602, A048603, etc.
Sequence in context: A052634 A377532 A059944 * A354019 A052682 A214592
KEYWORD
nonn,frac,easy,nice
AUTHOR
N. J. A. Sloane, Jan 22 2000
EXTENSIONS
More terms from R. J. Mathar, Jun 21 2007
STATUS
approved