OFFSET
1,4
COMMENTS
A(x)=sum(n>0 b(n)x^n/(3^(n-1)*n!), b(n)=T(n,1)*n!*3^(n-1) - integer.
REFERENCES
W. C. Yang, Composition equations, preprint, 1999.
FORMULA
a(n):=numerator(T(n,1)), T(n,m)=1/3*(stirling1(n,m)*m!/n!-sum(k=m+1..n-1, T(k,m)*sum(i=k..n, T(n,i)*T(i,k)))-T(m,m)*sum(i,m+1,n-1, T(n,i)*T(i,m))), n>m, T(n,n)=1. - Vladimir Kruchinin, Mar 10 2012
MATHEMATICA
max = 21; f[x_] := Sum[c[k]*x^k, {k, 0, max}]; c[0] = 0; c[1] = 1; s[1] = {}; coes = CoefficientList[ Series[ f[f[f[x]]] - Log[1 + x], {x, 0, max}], x]; eqns = Rest[ Thread[coes == 0]]; Do[eqns = Rest[eqns] /. s[k]; s[k+1] = Solve[eqns[[1]], c[k + 1]][[1]], {k, 1, max-1}]; Numerator[ Table[c[k], {k, 1, max}] /. Flatten[ Table[s[k], {k, 1, max}]]] (* Jean-François Alcover, Oct 19 2011 *)
T[n_, m_] := T[n, m] = If[n==m, 1, 1/3*(StirlingS1[n, m]*m!/n! - Sum[T[k, m]*Sum[T[n, i]*T[i, k], {i, k, n}], {k, m+1, n-1}] - T[m, m]*Sum[T[n, i]*T[i, m], {i, m+1, n-1}])]; Table[T[n, 1] // Numerator, {n, 1, 21}] (* Jean-François Alcover, Dec 15 2015, after Vladimir Kruchinin *)
PROG
(Maxima)
T(n, m):=if n=m then 1 else 1/3*(stirling1(n, m)*m!/n!-sum(T(k, m)*sum(T(n, i)*T(i, k), i, k, n), k, m+1, n-1)-T(m, m)*sum(T(n, i)*T(i, m), i, m+1, n-1));
makelist(num(T(n, 1)), n, 1, 7); /* Vladimir Kruchinin, Mar 10 2012 */
CROSSREFS
KEYWORD
sign,frac,easy,nice
AUTHOR
N. J. A. Sloane, Jan 22 2000
EXTENSIONS
More terms from R. J. Mathar, Jun 21 2007
STATUS
approved