login
A048603
Denominators of coefficients in function a(x) such that a(a(x)) = sin x.
11
1, 12, 160, 40320, 71680, 1277337600, 79705866240, 167382319104000, 91055981592576000, 62282291409321984000, 4024394214140805120000, 5882770031248492462080000, 9076273762497674084352000000
OFFSET
0,2
COMMENTS
Also denominators of coefficients in function a(x) such that a(a(x)) = sinh x.
A recursion exists for coefficients, but is too complicated to process without a computer algebra system.
REFERENCES
W. C. Yang, Polynomials are essentially integer partitions, preprint, 1999
W. C. Yang, Composition equations, preprint, 1999
LINKS
Dmitry Kruchinin, Vladimir Kruchinin, Method for solving an iterative functional equation $A^{2^n}(x)=F(x)$, arXiv:1302.1986
W. C. Yang, Derivatives are essentially integer partitions, Discrete Math., 222 (2000), 235-245.
EXAMPLE
x - x^3/12 - x^5/160 ...
MATHEMATICA
n = 13; m = 2 n - 1 (* m = maximal degree *); a[x_] = Sum[c[k] x^k, {k, 1, m, 2}] ; coes = DeleteCases[
CoefficientList[Series[a@a@x - Sin[x], {x, 0, m}], x] // Rest , 0]; Do[s[k] = Solve[coes[[1]] == 0] // First; coes = coes /. s[k] // Rest, {k, 1, n}]
(CoefficientList[a[x] /. Flatten @ Array[s, n], x] // Denominator // Partition[#, 2] &)[[All, 2]]
(* Jean-François Alcover, May 05 2011 *)
CROSSREFS
Sequence in context: A144346 A167558 A048609 * A275040 A109391 A296194
KEYWORD
frac,nonn,nice
AUTHOR
Winston C. Yang (yang(AT)math.wisc.edu)
EXTENSIONS
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 15 2007
STATUS
approved