

A048606


Numerators of coefficients in function a(x) such that a(a(x)) = sinh(x).


2



1, 1, 1, 53, 23, 92713, 742031, 594673187, 329366540401, 104491760828591, 1508486324285153, 582710832978168221, 1084662989735717135537, 431265609837882130202597, 784759327625761394688977441
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,4


COMMENTS

A recursion exists for coefficients, but is too complicated to use without a computer algebra system.


REFERENCES

W. C. Yang, Polynomials are essentially integer partitions, preprint, 1999
W. C. Yang, Composition equations, preprint, 1999


LINKS

Table of n, a(n) for n=0..14.
W. C. Yang, Derivatives are essentially integer partitions, Discrete Math., 222 (2000), 235245.


EXAMPLE

x + x^3/12  x^5/160 + ...


CROSSREFS

Cf. A048603. Apart from signs, the same sequence as A048602.
Sequence in context: A298633 A298710 A048602 * A033373 A289237 A319904
Adjacent sequences: A048603 A048604 A048605 * A048607 A048608 A048609


KEYWORD

frac,sign,nice


AUTHOR

Winston C. Yang (yang(AT)math.wisc.edu)


STATUS

approved



