login
A048605
Numerators of coefficients in function a(x) such that a(a(x)) = arctan(x).
2
1, -1, 7, -43, 4489, -49897, 20130311, -319053131, 329796121169, -62717244921977, 14635852695795623, -33233512260583073, 149490010959849868177, -3562767949848393597053
OFFSET
0,3
COMMENTS
A recursion exists for coefficients, but is too complicated to use without a computer algebra system.
REFERENCES
W. C. Yang, Polynomials are essentially integer partitions, preprint, 1999
W. C. Yang, Composition equations, preprint, 1999
LINKS
Dmitry Kruchinin, Vladimir Kruchinin, Method for solving an iterative functional equation A^{2^n}(x) = F(x), arXiv:1302.1986
W. C. Yang, Derivatives are essentially integer partitions, Discrete Math., 222 (2000), 235-245.
FORMULA
a(n) = numerator(T(2*n-1,1)), T(n,m)=1/2*(2^(-m-1)*m!*((-1)^(n+m)+1)*(-1)^((3*n+m)/2)*sum(i=m..n, (2^i*stirling1(i,m)*binomial(n-1,i-1))/i!)-sum(i=m+1..n-1, T(n,i)*T(i,m))), n>m, T(n,n)=1. - Vladimir Kruchinin, Mar 12 2012
EXAMPLE
x - x^3/6 + x^5 * 7/120 + ...
MATHEMATICA
n = 28; a[x_] = Sum[c[k] k! x^k, {k, 1, n, 2}];
sa = Series[a[x], {x, 0, n}];
coes = CoefficientList[ComposeSeries[sa, sa] - Series[ArcTan[x], {x, 0, n}], x] // Rest;
eq = Reduce[((# == 0) & /@ coes)]; Table[c[k] k!, {k, 1, n, 2}] /. First[Solve[eq]] // Numerator
(* Jean-François Alcover, Apr 26 2011 *)
PROG
(Maxima)
T(n, m):=if n=m then 1 else 1/2*(2^(-m-1)*m!*((-1)^(n+m)+1)*(-1)^((3*n+m)/2)*sum((2^i*stirling1(i, m)*binomial(n-1, i-1))/i!, i, m, n)-sum(T(n, i)*T(i, m), i, m+1, n-1));
makelist(num(T(2*n-1, 1), n, 1, 5)); /* Vladimir Kruchinin, Mar 12 2012 */
CROSSREFS
Sequence in context: A015463 A177507 A258182 * A165210 A162454 A203210
KEYWORD
frac,sign,nice
AUTHOR
Winston C. Yang (yang(AT)math.wisc.edu)
STATUS
approved