OFFSET
0,3
COMMENTS
A recursion exists for coefficients, but is too complicated to use without a computer algebra system.
REFERENCES
W. C. Yang, Polynomials are essentially integer partitions, preprint, 1999
W. C. Yang, Composition equations, preprint, 1999
LINKS
Dmitry Kruchinin, Vladimir Kruchinin, Method for solving an iterative functional equation A^{2^n}(x) = F(x), arXiv:1302.1986
W. C. Yang, Derivatives are essentially integer partitions, Discrete Math., 222 (2000), 235-245.
FORMULA
a(n) = numerator(T(2*n-1,1)), T(n,m)=1/2*(2^(-m-1)*m!*((-1)^(n+m)+1)*(-1)^((3*n+m)/2)*sum(i=m..n, (2^i*stirling1(i,m)*binomial(n-1,i-1))/i!)-sum(i=m+1..n-1, T(n,i)*T(i,m))), n>m, T(n,n)=1. - Vladimir Kruchinin, Mar 12 2012
EXAMPLE
x - x^3/6 + x^5 * 7/120 + ...
MATHEMATICA
n = 28; a[x_] = Sum[c[k] k! x^k, {k, 1, n, 2}];
sa = Series[a[x], {x, 0, n}];
coes = CoefficientList[ComposeSeries[sa, sa] - Series[ArcTan[x], {x, 0, n}], x] // Rest;
eq = Reduce[((# == 0) & /@ coes)]; Table[c[k] k!, {k, 1, n, 2}] /. First[Solve[eq]] // Numerator
(* Jean-François Alcover, Apr 26 2011 *)
PROG
(Maxima)
T(n, m):=if n=m then 1 else 1/2*(2^(-m-1)*m!*((-1)^(n+m)+1)*(-1)^((3*n+m)/2)*sum((2^i*stirling1(i, m)*binomial(n-1, i-1))/i!, i, m, n)-sum(T(n, i)*T(i, m), i, m+1, n-1));
makelist(num(T(2*n-1, 1), n, 1, 5)); /* Vladimir Kruchinin, Mar 12 2012 */
CROSSREFS
KEYWORD
frac,sign,nice
AUTHOR
Winston C. Yang (yang(AT)math.wisc.edu)
STATUS
approved