login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A095885
Let F(x) be the function such that F(F(x)) = arctan(x), then F(x) = Sum_{n>=0} a(n)*x^(2n+1)/(2n+1)!.
4
1, -1, 7, -129, 4489, -249485, 20130311, -2233371917, 329796121169, -62717244921977, 14635852695795623, -4021254983530551833, 1345410098638648813593, -602107783524378517901957, 304930961594040255078182951, -81321478646591075063015099621
OFFSET
0,3
LINKS
FORMULA
a(n) = (2*n-1)!*T(2*n-1,1), T(n,m)=1/2*(2^(-m-1)*m!*((-1)^(n+m)+1)*(-1)^((3*n+m)/2)*sum(i=m..n, (2^i*stirling1(i,m)*binomial(n-1,i-1))/i!)-sum(i=m+1..n-1, T(n,i)*T(i,m))), n>m, T(n,n)=1. - Vladimir Kruchinin, Mar 12 2012
EXAMPLE
F(x) = x - 1*x^3/3! + 7*x^5/5! - 129*x^7/7! + 4489*x^9/9! - 249485*x^11/11! +- ...
Special values:
F(x)=Pi/8 at x=F(sqrt(2)-1) = 0.40303074376779286039477674...
F(x)=Pi/6 at x=F(sqrt(3)/3) = 0.54854553000356...
PROG
(PARI) {a(n)=local(A, B, F); F=atan(x+x*O(x^(2*n+1))); A=F; for(i=0, n, B=serreverse(A); A=(A+subst(B, x, F))/2); (2*n+1)!*polcoeff(A, 2*n+1, x)}
(Maxima)
T(n, m):=if n=m then 1 else 1/2*(2^(-m-1)*m!*((-1)^(n+m)+1)*(-1)^((3*n+m)/2)*sum((2^i*stirling1(i, m)*binomial(n-1, i-1))/i!, i, m, n)-sum(T(n, i)*T(i, m), i, m+1, n-1));
makelist((2*n-1)!*T(2*n-1, 1), n, 1, 5); /* Vladimir Kruchinin, Mar 12 2012 */
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jun 11 2004
STATUS
approved