OFFSET
0,3
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see page 191.
LINKS
Vladimir Kruchinin and D. V. Kruchinin, Composita and their properties , arXiv:1103.2582 [math.CO], 2011-2013.
FORMULA
E.g.f.: exp(x/(1-4*x)^(1/2)).
a(n) = n!*sum((sum(2^k*k/(n-m)*binomial(2*(n-m)-k-1,n-m-1)*binomial(k+m-1,m-1),k,1,n-m))/m!,m,1,n-1)+1. - Vladimir Kruchinin, Sep 10 2010
Recurrence (for n>5): (n-5)*a(n) = 6*(2*n^2 - 13*n + 16)*a(n-1) - (48*n^3 - 432*n^2 + 1199*n - 1051)*a(n-2) + 2*(n-2)*(4*n-15)*(8*n^2 - 54*n + 89)*a(n-3) + 4*(n-4)*(n-3)*(n-2)*a(n-4). - Vaclav Kotesovec, Jun 27 2013
a(n) ~ n^(n-1/3)*exp(3*n^(1/3)/4-n)*4^n/sqrt(6). - Vaclav Kotesovec, Jun 27 2013
a(n) = n! * Sum_{k=0..n} 4^(n-k) * binomial(n-k/2-1,n-k)/k!. - Seiichi Manyama, Jan 30 2024
MATHEMATICA
CoefficientList[Series[E^(x/(1-4*x)^(1/2)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 27 2013 *)
PROG
(Maxima) a(n):=n!*sum((sum(2^k*k/(n-m)*binomial(2*(n-m)-k-1, n-m-1)*binomial(k+m-1, m-1), k, 1, n-m))/m!, m, 1, n-1)+1; /* Vladimir Kruchinin, Sep 10 2010 */
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x/sqrt(1-4*x)))) \\ Joerg Arndt, Jan 30 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 23 2000
STATUS
approved