OFFSET
1,2
COMMENTS
This is the number of permutations of 2n letters having a cycle of length n. - Marko Riedel, Apr 21 2015
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 7.68(d).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..225
Math Stackexchange, How many permutations
FORMULA
a(n) = 2*m*m!/(m+1) where m=2n-1.
a(n) = A126074(2n,n). - Alois P. Heinz, Apr 21 2017
a(n) = A293211(2n,n). - Alois P. Heinz, Oct 11 2017
EXAMPLE
For n=2, there are 9 permutations of [4] = { 1, 2, 3, 4 } which have a cycle of length 2: each of the 4*3/2 = 6 transpositions, plus the 3 different possible products of two transpositions. - M. F. Hasler, Apr 21 2015
MATHEMATICA
Table[(2 n - 1) (2 n - 1)! / n, {n, 30}] (* Vincenzo Librandi, Apr 22 2015 *)
PROG
(PARI) a(n)=(2*n-1)*(2*n-1)!/n \\ Charles R Greathouse IV, Apr 21 2015
(Magma) [(2*n-1)*Factorial(2*n-1)/n: n in [1..20]]; // Vincenzo Librandi, Apr 22 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 23 2000
STATUS
approved