login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059945
Number of 4-block bicoverings of an n-set.
10
0, 0, 4, 39, 280, 1815, 11284, 68859, 416560, 2509455, 15086764, 90610179, 543928840, 3264374295, 19588645444, 117539063499, 705255937120, 4231600258335, 25389795391324, 152339353740819, 914037866361400, 5484232429393575, 32905410268988404, 197432508689714139
OFFSET
1,3
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
FORMULA
a(n) = (1/4!)*(6^n - 4*3^n - 3*2^n + 12).
E.g.f. for m-block bicoverings of an n-set is exp(-x-1/2*x^2*(exp(y)-1))*Sum_{i=0..inf} x^i/i!*exp(binomial(i, 2)*y).
a(n) = 12*a(n-1) - 47*a(n-2) + 72*a(n-3) - 36*a(n-4) for n > 4. - Harvey P. Dale, Aug 10 2011
G.f.: -x^3*(9*x-4) / ((x-1)*(2*x-1)*(3*x-1)*(6*x-1)). - Colin Barker, Jan 11 2013
EXAMPLE
There are 4 4-block bicoverings of a 3-set: {{1},{2},{3},{1,2,3}}, {{2},{3},{1,2},{1,3}}, {{1},{3},{1,2},{2,3}} and {{1},{2},{1,3},{2,3}}.
MATHEMATICA
With[{c=1/4!}, Table[c(6^n-4 3^n-3 2^n+12), {n, 20}]] (* or *) LinearRecurrence[ {12, -47, 72, -36}, {0, 0, 4, 39}, 20] (* Harvey P. Dale, Aug 10 2011 *)
PROG
(PARI) a(n) = {(1/4!)*(6^n - 4*3^n - 3*2^n + 12)} \\ Andrew Howroyd, Jan 29 2020
CROSSREFS
Column k=4 of A059443.
Cf. A002718.
Sequence in context: A296594 A290559 A360740 * A198853 A093851 A224755
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Feb 14 2001
EXTENSIONS
More terms from Colin Barker, Jan 11 2013
STATUS
approved