login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093851
a(n) = A002283(n-1) + floor(A052268(n)/(1+n)).
1
4, 39, 324, 2799, 24999, 228570, 2124999, 19999999, 189999999, 1818181817, 17499999999, 169230769229, 1642857142856, 15999999999999, 156249999999999, 1529411764705881, 14999999999999999, 147368421052631577, 1449999999999999999, 14285714285714285713
OFFSET
1,1
COMMENTS
The first column r=1 of a triangle defined by T(n,r) = 10^(n-1) -1 + r*floor(9*10^(n-1)/(n+1)).
A row starts with a (virtual) 0th column of a rep-9-digit and fills the remainder with n+1 numbers in arithmetic progression with the largest step such that all numbers in the n-th row are n-digit numbers.
LINKS
FORMULA
a(n) = 10^(n-1) -1 + floor(9*10^(n-1)/(n+1)). - G. C. Greubel, Apr 02 2019
EXAMPLE
The triangle starts in row n=1 as
4 9 # -1, -1+5, -1+2*5
39 69 99 # 9,9+30,9+2*30
324 549 774 999 # 99, 99+225, 99+2*225, 99+3*225
2799 4599 6399 8199 9999 # 999, 999+1800, 999+2*1800,..
...
The sequence contains the first column.
MAPLE
A093851 := proc(n) 10^(n-1)-1+floor(9*10^(n-1)/(n+1)) ; end proc: seq(A093851(n), n=1..20) ; # R. J. Mathar, Oct 14 2010
MATHEMATICA
Table[10^(n-1) -1 +Floor[9*10^(n-1)/(n+1)], {n, 1, 20}] (* G. C. Greubel, Apr 02 2019 *)
PROG
(PARI) {a(n) = 10^(n-1) -1 +floor(9*10^(n-1)/(n+1))}; \\ G. C. Greubel, Apr 02 2019
(Magma) [10^(n-1) -1 +Floor(9*10^(n-1)/(n+1)): n in [1..20]]; // G. C. Greubel, Apr 02 2019
(Sage) [10^(n-1) -1 +floor(9*10^(n-1)/(n+1)) for n in (1..20)] # G. C. Greubel, Apr 02 2019
CROSSREFS
KEYWORD
base,easy,nonn
AUTHOR
Amarnath Murthy, Apr 18 2004
EXTENSIONS
More terms from R. J. Mathar, Oct 14 2010
STATUS
approved