|
|
A093854
|
|
Triangle read by rows: T(n,m) = number of 3-uniform T_0-hypergraphs with n distinct edges and m vertices(n>=3, 1<=m<=2*n+1).
|
|
0
|
|
|
0, 0, 0, 4, 80, 480, 840, 0, 0, 0, 1, 200, 3840, 27720, 77280, 45360, 0, 0, 0, 0, 252, 14664, 263844, 2192400, 8709120, 13819680, 3991680, 0, 0, 0, 0, 210, 38340, 1518790, 26267360, 240765840, 1205492400, 3068881200, 3180038400, 605404800
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
3,4
|
|
LINKS
|
Table of n, a(n) for n=3..42.
|
|
FORMULA
|
E.g.f.: (1+x)*exp(-x+x^2/2+x^3/3*y)*Sum((1+y)^binomial(n, 3)*exp(-x^2*(1+y)^n/2)*x^n/n!, n=0..infinity).
|
|
EXAMPLE
|
0,0,0,4,80,480,840; 0,0,0,1,200,3840,27720,77280,45360; 0,0,0,0,252,14664,263844,2192400,8709120,13819680,3991680; ...
|
|
CROSSREFS
|
Sequence in context: A204296 A192790 A211152 * A345459 A269146 A192834
Adjacent sequences: A093851 A093852 A093853 * A093855 A093856 A093857
|
|
KEYWORD
|
nonn,tabf
|
|
AUTHOR
|
Goran Kilibarda, Vladeta Jovovic, May 21 2004
|
|
STATUS
|
approved
|
|
|
|