The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A093852 a(n) = 10^(n-1) - 1 + n*floor(9*10^(n-1)/(n+1)). 2
 4, 69, 774, 8199, 84999, 871425, 8874999, 89999999, 909999999, 9181818179, 92499999999, 930769230759, 9357142857140, 93999999999999, 943749999999999, 9470588235294111, 94999999999999999, 952631578947368403, 9549999999999999999, 95714285714285714279 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This sequence is the main diagonal of A093850. LINKS G. C. Greubel, Table of n, a(n) for n = 1..995 EXAMPLE n-th row of the following triangle contains n uniformly located n-digit numbers. i.e. n terms of an arithmetic progression with 10^(n-1)-1 as the term preceding the first term and (n+1)-th term is the largest possible n-digit term. Given the triangle defined in A093850: ...4; ..39 69; .324 549 774; 2799 4599 6399 8199..... then this sequence is the leading diagonal. MAPLE A093852 := proc(n) r := n ; 10^(n-1)-1+r*floor(9*10^(n-1)/(n+1)) ; end proc: seq(A093852(n), n=1..50) ; # R. J. Mathar, Oct 01 2011 MATHEMATICA Table[10^(n-1) -1 +n*Floor[9*10^(n-1)/(n+1)], {n, 25}] (* G. C. Greubel, Mar 21 2019 *) PROG (PARI) {a(n) = 10^(n-1) -1 +n*floor(9*10^(n-1)/(n+1))}; \\ G. C. Greubel, Mar 21 2019 (Magma) [10^(n-1) -1 +n*Floor(9*10^(n-1)/(n+1)): n in [1..25]]; // G. C. Greubel, Mar 21 2019 (Sage) [10^(n-1) -1 +n*floor(9*10^(n-1)/(n+1)) for n in (1..25)] # G. C. Greubel, Mar 21 2019 CROSSREFS Cf. A093846, A093847, A061772, A093450, A072875. Sequence in context: A125587 A134794 A248027 * A065573 A308294 A278553 Adjacent sequences: A093849 A093850 A093851 * A093853 A093854 A093855 KEYWORD easy,nonn AUTHOR Amarnath Murthy, Apr 18 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 31 23:42 EDT 2023. Contains 363068 sequences. (Running on oeis4.)