login
A072875
Smallest start for a run of n consecutive numbers of which the i-th has exactly i prime factors.
16
2, 3, 61, 193, 15121, 838561, 807905281, 19896463921, 3059220303001, 3931520917431241
OFFSET
1,1
COMMENTS
By definition, each term of this sequence is prime.
a(11) <= 1452591346605212407096281241 (Frederick Schneider), see primepuzzles link. - sent by amd64(AT)vipmail.hu, Dec 21 2007
Prime factors are counted with multiplicity. - Harvey P. Dale, Mar 09 2021
REFERENCES
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 61, p. 22, Ellipses, Paris 2008.
LINKS
EXAMPLE
a(3)=61 because 61 (prime), 62 (=2*31), 63 (=3*3*7) have exactly 1, 2, 3 prime factors respectively, and this is the smallest solution;
a(6)=807905281: 807905281 is prime; 807905281+1=2*403952641;
807905281+2=3*15733*17117; 807905281+3=2*2*1871*107951;
807905281+4=5*11*43*211*1619; 807905281+5=2*3*3*3*37*404357;
807905281+6=7*7*7*7*29*41*283; 807905281 is the smallest number m such that m+k is product of k+1 primes for k=0,1,2,3,4,5,6.
MATHEMATICA
(* This program is not suitable to compute a large number of terms. *) nmax = 6; kmax = 10^6; a[1] = 2; a[n_] := a[n] = For[k = a[n-1]+n-1, k <= kmax, k++, If[AllTrue[Range[0, n-1], PrimeOmega[k+#] == #+1&], Return[k] ] ]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, nmax}] (* Jean-François Alcover, Sep 06 2017 *)
CROSSREFS
a(1) = A000040(1), a(2) = A005383(1), a(3) = A112998(1), a(4) = A113000(1), a(5) = A113008(1), a(6) = A113150(1).
Sequence in context: A144545 A085326 A062308 * A093551 A173915 A293041
KEYWORD
hard,nice,nonn,more
AUTHOR
Rick L. Shepherd, Jun 30 2002 and Jens Kruse Andersen, Jul 28 2002
EXTENSIONS
a(7) found by Mark W. Lewis
a(8) and a(9) found by Jens Kruse Andersen
a(10) found by Jens Kruse Andersen; probably a(11) > 10^20. - Aug 24 2002
Entry revised by N. J. A. Sloane, Jan 26 2007
Cross-references and editing by Charles R Greathouse IV, Apr 20 2010
STATUS
approved