login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144545
a(n) = 2^(n*(n-1))*(2^n + 1)*Product_{i=1..n-1} (4^i - 1).
1
2, 3, 60, 25920, 197406720, 25015379558400, 51615733565620224000, 1718194449153210615595008000, 918817155086936330770931156779008000, 7877103854727828347931810809383874168094720000, 1081561598265935342583934931877242782978883444539392000000
OFFSET
0,1
MAPLE
g:=m->2^(m*(m-1))*mul( 4^i-1, i=1..m-1)*(2^m+1);
PROG
(Python)
from math import prod
def A144545(n): return ((1<<n)+1)*prod((1<<i)-1 for i in range(2, 2*n-1, 2)) << n*(n-1) # Chai Wah Wu, Jun 20 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 30 2008
STATUS
approved