Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Jun 20 2022 18:59:55
%S 2,3,60,25920,197406720,25015379558400,51615733565620224000,
%T 1718194449153210615595008000,918817155086936330770931156779008000,
%U 7877103854727828347931810809383874168094720000,1081561598265935342583934931877242782978883444539392000000
%N a(n) = 2^(n*(n-1))*(2^n + 1)*Product_{i=1..n-1} (4^i - 1).
%H T. D. Noe, <a href="/A144545/b144545.txt">Table of n, a(n) for n = 0..20</a>
%p g:=m->2^(m*(m-1))*mul( 4^i-1, i=1..m-1)*(2^m+1);
%o (Python)
%o from math import prod
%o def A144545(n): return ((1<<n)+1)*prod((1<<i)-1 for i in range(2,2*n-1,2)) << n*(n-1) # _Chai Wah Wu_, Jun 20 2022
%Y Cf. A003923, A001308, A003053.
%K nonn
%O 0,1
%A _N. J. A. Sloane_, Dec 30 2008