login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113008
Numbers n such that n, n+1, n+2, n+3 and n+4 are respectively 1,2,3,4,5-almost primes.
7
15121, 35521, 52321, 117841, 235441, 313561, 398821, 516421, 520021, 531121, 570601, 623641, 761113, 838561, 941041, 1117321, 1190821, 1317361, 1333621, 1336177, 1372081, 1413793, 1424041, 1431361, 1488901, 1513921, 1560121
OFFSET
1,1
COMMENTS
All listed terms are congruent to 1 modulo 12.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
15121 is prime (or 1-almost prime), 15122=2*7561 is semiprime (or 2-almost prime), 15123=3*71*71 is 3-almost prime, 15124=2*2*29*199 is 4-almost prime, 15125=5*5*5*11*11 is 5-almost prime.
MATHEMATICA
f[n_] := Plus @@ Last /@ FactorInteger@n; t = {}; Do[p = Prime[n]; If[Array[ f[p + # ] &, 4] == {2, 3, 4, 5}, AppendTo[t, p]], {n, 126483}]; t (* Robert G. Wilson v *)
aprQ[p_]:=Total[FactorInteger[#][[All, 2]]]&/@Range[p+1, p+4]=={2, 3, 4, 5}; Select[ Prime[ Range[120000]], aprQ] (* Harvey P. Dale, Dec 17 2022 *)
PROG
(Magma) [n: n in PrimesUpTo(2*10^6) | forall{k: k in [1..4] | &+[f[j, 2]: j in [1..#f]] eq k+1 where f is Factorization(n+k)}]; // Vincenzo Librandi, Sep 24 2012
(PARI) list(lim)=my(v=List(), L=(lim+2)\3, t); forprime(p=3, L\3, forprime(q=3, min(L\p, p), t=3*p*q-2; if(t%12==1 && isprime(t) && isprime((t+1)/2) && bigomega(t+3)==4 && bigomega(t+4)==5, listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Feb 05 2017
CROSSREFS
Sequence in context: A283527 A190294 A124047 * A004935 A004955 A004975
KEYWORD
nonn,easy
AUTHOR
Zak Seidov, Jan 03 2006
EXTENSIONS
More terms from Robert G. Wilson v, Jan 05 2006
STATUS
approved