login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A283527 First of three consecutive Sophie Germain semiprimes: n, n+1 and n+2 are all terms of A111153. 1
15117, 17245, 34413, 93453, 143101, 157713, 190621, 208293, 233097, 294301, 323281, 346497, 470341, 501477, 1306113, 1337221, 1346401, 1655853, 1682313, 1774801, 1877613, 1879021, 1933233, 1976041 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

All terms are 1 mod 4, see A056809.

LINKS

Zak Seidov, Table of n, a(n) for n = 1..408

MATHEMATICA

po[x_] := PrimeOmega[x]; Select[Range[15117, 200000, 2],

2 == po[#] == po[2*# + 1] ==po[# + 1] == po[2*# + 3] == po[# + 2] ==

po[2*# + 5] &]

PROG

(PARI) {bo(x)=bigomega(x)

forstep(n=15117, 2000000, 2, if(

2 == bo(n) && 2 == bo(n+1) && 2 == bo(n+2) && 2 == bo(2*n+1) &&

2 == bo(2*n+3) && 2 == bo(2*n+5), print1(n", ")))}

(PARI) list(lim)=lim\=1; my(v=List(), x=2*lim+5, u=vectorsmall(x)); forprime(p=2, x\2, forprime(q=2, min(lim\p, p), u[p*q]=1)); forstep(n=15117, lim, 4, if(u[n] && u[n+1] && u[n+2] && u[2*n+1] && u[2*n+3] && u[2*n+5], listput(v, n))); Vec(v) \\ Charles R Greathouse IV, Mar 10 2017

CROSSREFS

Subsequence of A056809 and of A111153. Cf. A001358.

Sequence in context: A257014 A237335 A206410 * A190294 A124047 A113008

Adjacent sequences: A283524 A283525 A283526 * A283528 A283529 A283530

KEYWORD

nonn

AUTHOR

Zak Seidov, Mar 09 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 17:25 EST 2022. Contains 358668 sequences. (Running on oeis4.)