login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072877
a(1) = a(2) = a(3) = a(4) = 1; a(n) = (a(n-1)*a(n-3) + a(n-2)^4)/a(n-4).
5
1, 1, 1, 1, 2, 3, 19, 119, 65339, 67258454, 959259994615659593, 171965197021698738644442682357, 12959040525296547835480490169418622922155526267774117749963303914461
OFFSET
1,5
COMMENTS
A variation of a Somos-4 sequence with a(n-2)^4 in place of a(n-2)^2.
LINKS
Joshua Alman, Cesar Cuenca, and Jiaoyang Huang, Laurent phenomenon sequences, Journal of Algebraic Combinatorics 43(3) (2015), pp. 589-633.
S. Fomin and A. Zelevinsky, The Laurent Phenomenon, Advances in Applied Mathematics 28 (2002), pp. 119-144.
David Gale, The strange and surprising saga of the Somos sequences, Math. Intelligencer 13(1) (1991), pp. 40-42.
Andrew N. W. Hone, Diophantine non-integrability of a third order recurrence with the Laurent property, arXiv:math/0601324 [math.NT], 2006.
Andrew N. W. Hone, Diophantine non-integrability of a third order recurrence with the Laurent property, J. Phys. A: Math. Gen. 39 (2006), pp. L171-L177.
FORMULA
Lim_{n->infinity} (log(log(a(n))))/n = log(2+sqrt(3))/2 = A065918/2 or about 0.658. - Andrew Hone, Nov 15 2005; corrected by Michel Marcus, May 12 2019
From Jon E. Schoenfield, May 12 2019: (Start)
It appears that, for n >= 1,
a(n) = ceiling(e^(c0*x^n + d0/x^n)) if n is even,
ceiling(e^(c1*x^n + d1/x^n)) if n is odd,
where
x = sqrt(2 + sqrt(3)) = (sqrt(2) + sqrt(6))/2
c0 = 0.024915247166055931001426396817534982995670642690...
c1 = 0.029604794868229453467890216788323427656809346011...
d0 = -10.535089427608481105514469573411011428431309483956...
d1 = -2.856773870202800001336732759121362374871088274450...
(End)
MAPLE
L[0]:=0; L[1]:=0; L[2]:=0; L[3]:=0; for n from 0 to 4000 do L[n+4]:=evalf(ln(1+exp(L[n+3]+L[n+1]-4*L[n+2]))+4*L[n+2]-L[n]): od: for n from 3990 to 4000 do print(evalf(ln(L[n+4])/(n+4))): od: #Note: L[n] is log(a[n]) # Andrew Hone, Nov 15 2005
MATHEMATICA
nxt[{a_, b_, c_, d_}]:={b, c, d, (d*b+c^4)/a}; NestList[nxt, {1, 1, 1, 1}, 15][[All, 1]] (* Harvey P. Dale, Jun 01 2022 *)
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Jul 28 2002
EXTENSIONS
Definition corrected by Matthew C. Russell, Apr 24 2012
STATUS
approved