The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A072877 a(1) = a(2) = a(3) = a(4) = 1; a(n) = (a(n-1)*a(n-3) + a(n-2)^4)/a(n-4). 5
 1, 1, 1, 1, 2, 3, 19, 119, 65339, 67258454, 959259994615659593, 171965197021698738644442682357, 12959040525296547835480490169418622922155526267774117749963303914461 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS A variation of a Somos-4 sequence with a(n-2)^4 in place of a(n-2)^2. LINKS Seiichi Manyama, Table of n, a(n) for n = 1..17 Joshua Alman, Cesar Cuenca, and Jiaoyang Huang, Laurent phenomenon sequences, Journal of Algebraic Combinatorics 43(3) (2015), pp. 589-633. S. Fomin and A. Zelevinsky, The Laurent Phenomenon, Advances in Applied Mathematics 28 (2002), pp. 119-144. David Gale, The strange and surprising saga of the Somos sequences, Math. Intelligencer 13(1) (1991), pp. 40-42. Andrew N. W. Hone, Diophantine non-integrability of a third order recurrence with the Laurent property, arXiv:math/0601324 [math.NT], 2006. Andrew N. W. Hone, Diophantine non-integrability of a third order recurrence with the Laurent property, J. Phys. A: Math. Gen. 39 (2006), pp. L171-L177. FORMULA Lim_{n->infinity} (log(log(a(n))))/n = log(2+sqrt(3))/2 = A065918/2 or about 0.658. - Andrew Hone, Nov 15 2005; corrected by Michel Marcus, May 12 2019 From Jon E. Schoenfield, May 12 2019: (Start) It appears that, for n >= 1, a(n) = ceiling(e^(c0*x^n + d0/x^n)) if n is even, ceiling(e^(c1*x^n + d1/x^n)) if n is odd, where x = sqrt(2 + sqrt(3)) = (sqrt(2) + sqrt(6))/2 c0 = 0.024915247166055931001426396817534982995670642690... c1 = 0.029604794868229453467890216788323427656809346011... d0 = -10.535089427608481105514469573411011428431309483956... d1 = -2.856773870202800001336732759121362374871088274450... (End) MAPLE L[0]:=0; L[1]:=0; L[2]:=0; L[3]:=0; for n from 0 to 4000 do L[n+4]:=evalf(ln(1+exp(L[n+3]+L[n+1]-4*L[n+2]))+4*L[n+2]-L[n]): od: for n from 3990 to 4000 do print(evalf(ln(L[n+4])/(n+4))): od: #Note: L[n] is log(a[n]) # Andrew Hone, Nov 15 2005 MATHEMATICA nxt[{a_, b_, c_, d_}]:={b, c, d, (d*b+c^4)/a}; NestList[nxt, {1, 1, 1, 1}, 15][[All, 1]] (* Harvey P. Dale, Jun 01 2022 *) CROSSREFS Cf. A006720, A022405, A061292, A065918, A072878, A072879, A072880, A074394, A178768. Sequence in context: A141508 A366357 A119344 * A201378 A241350 A032329 Adjacent sequences: A072874 A072875 A072876 * A072878 A072879 A072880 KEYWORD easy,nonn AUTHOR Benoit Cloitre, Jul 28 2002 EXTENSIONS Definition corrected by Matthew C. Russell, Apr 24 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 20:29 EST 2023. Contains 367616 sequences. (Running on oeis4.)