OFFSET
1,2
COMMENTS
x = 2^n - 1 is prime if and only if x divides cosh(2^(n - 2)*log(2 + sqrt(3))).
LINKS
Harry J. Smith, Table of n, a(n) for n = 1..2000
Chris Caldwell, Primality Proving, Arndt's theorem.
FORMULA
Equals arccosh(2) since arccosh(x) = log(x + sqrt(x^2 - 1)). - Stanislav Sykora, Nov 01 2013
Equals arctanh(sqrt(3)/2). - Amiram Eldar, Feb 09 2024
Equals log(4) - Sum_{k>=1} (2*k - 1)!!/(k*k!*2^(3*k + 1)). - Antonio Graciá Llorente, Feb 14 2024
Equals Sum_{n>=0} ((-1)^(n)*binomial(2*n, n))/(2^(3*n - 1/2)*(2*n + 1)). - Antonio Graciá Llorente, Nov 13 2024
EXAMPLE
1.316957896924816708625046347307968444...
MATHEMATICA
First@ RealDigits[Log[2 + Sqrt@ 3], 10, 102] (* Michael De Vlieger, May 12 2019 *)
PROG
(PARI) default(realprecision, 2080); x=log(2 + sqrt(3)); for (n=1, 2000, d=floor(x); x=(x-d)*10; write("b065918.txt", n, " ", d)) \\ Harry J. Smith, Nov 04 2009
(PARI) acosh(2) \\ Charles R Greathouse IV, Jan 07 2016
CROSSREFS
KEYWORD
AUTHOR
Frank Ellermann, Dec 08 2001
STATUS
approved