login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065921
Bessel polynomial {y_n}'(3).
6
0, 1, 21, 501, 14455, 496770, 19911486, 913839031, 47303189361, 2727741976785, 173455231572865, 12060173714421756, 910301022642409476, 74134150415555474881, 6479678618270868170265, 605042444997867941987385, 60110944381660549838273911
OFFSET
0,3
REFERENCES
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
FORMULA
Recurrence: (n-1)^2*a(n) = (2*n - 1)*(3*n^2 - 3*n + 1)*a(n-1) + n^2*a(n-2). - Vaclav Kotesovec, Jul 22 2015
a(n) ~ 2^(n+1/2) * 3^(n-1) * n^(n+1) / exp(n-1/3). - Vaclav Kotesovec, Jul 22 2015
From G. C. Greubel, Aug 14 2017: (Start)
a(n) = 2*n*(1/2)_{n}*6^(n - 1)* hypergeometric1f1(1 - n, -2*n, 2/3).
E.g.f.: ((1 - 6*x)^(3/2) + 3*x*(1 - 6*x)^(1/2) + 15*x - 1) * exp((1 - sqrt(1 - 6*x))/3)/(9*(1 - 6*x)^(3/2)). (End)
G.f.: (t/(1-t)^3)*hypergeometric2f0(2,3/2; - ; 6*t/(1-t)^2). - G. C. Greubel, Aug 16 2017
MATHEMATICA
Table[Sum[(n+k+1)!*3^k/((n-k-1)!*k!*2^(k+1)), {k, 0, n-1}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 22 2015 *)
Join[{0}, Table[2*n*Pochhammer[1/2, n]*6^(n - 1)* Hypergeometric1F1[1 - n, -2*n, 2/3], {n, 1, 50}]] (* G. C. Greubel, Aug 14 2017 *)
PROG
(PARI) for(n=0, 50, print1(sum(k=0, n-1, (n+k+1)!*3^k/((n-k-1)!*k! *2^(k+1))), ", ")) \\ G. C. Greubel, Aug 14 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 08 2001
STATUS
approved