login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A065919 Bessel polynomial y_n(4). 6
1, 5, 61, 1225, 34361, 1238221, 54516085, 2836074641, 170218994545, 11577727703701, 880077524475821, 73938089783672665, 6803184337622361001, 680392371852019772765, 73489179344355757819621, 8525425196317119926848801, 1057226213522667226687070945 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Main diagonal of A143411. - Peter Bala, Aug 14 2008
REFERENCES
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
LINKS
W. Mlotkowski and A. Romanowicz, A family of sequences of binomial type, Probability and Mathematical Statistics, Vol. 33, Fasc. 2 (2013), pp. 401-408.
FORMULA
y_n(x) = Sum_{k=0..n} (n+k)!*(x/2)^k/((n-k)!*k!).
From Peter Bala, Aug 14 2008: (Start)
Recurrence relation: a(0) = 1, a(1) = 5, a(n) = 4*(2*n-1)*a(n-1) + a(n-2) for n >= 2. Sequence A143412(n) satisfies the same recurrence relation.
1/sqrt(e) = 1 - 2*Sum_{n = 0..inf} (-1)^n/(a(n)*a(n+1)) = 1 - 2*( 1/(1*5) - 1/(5*61) + 1/(61*1225) - ... ). (End)
G.f.: 1/Q(0), where Q(k)= 1 - x - 4*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 17 2013
a(n) = exp(1/4)/sqrt(2*Pi)*BesselK(n+1/2,1/4). - Gerry Martens, Jul 22 2015
a(n) ~ 2^(3*n+1/2) * n^n / exp(n-1/4). - Vaclav Kotesovec, Jul 22 2015
From Peter Bala, Apr 12 2017: (Start)
a(n) = 1/n!*Integral_{x = 0..inf} x^n*(1 + 2*x)^n dx.
E.g.f.: d/dx( exp(x*c(2*x)) ) = 1 + 5*x + 61*x^2/2! + 1225*x^3/3! + ..., where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. (End)
G.f.: (1/(1-x))*hypergeometric2f0(1,1/2; - ; 8*x/(1-x)^2). - G. C. Greubel, Aug 16 2017
a(n) = 2^n*KummerU(-n, -2*n, 1/2). - Peter Luschny, May 10 2022
MAPLE
seq(simplify(2^n*KummerU(-n, -2*n, 1/2)), n=0..16); # Peter Luschny, May 10 2022
MATHEMATICA
Table[Sum[(n+k)!*2^k/((n-k)!*k!), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 22 2015 *)
PROG
(PARI) for (n=0, 100, if (n>1, a=4*(2*n - 1)*a1 + a2; a2=a1; a1=a, if (n, a=a1=5, a=a2=1)); write("b065919.txt", n, " ", a) ) \\ Harry J. Smith, Nov 04 2009
(PARI) a(n) = sum(k=0, n, (n+k)!*2^k/((n-k)!*k!) ); \\ Joerg Arndt, May 17 2013
(Magma)
A065919:= func< n | (&+[Binomial(n, k)*Factorial(n+k)*2^k/Factorial(n): k in [0..n]]) >;
[A065919(n): n in [0..30]]; // G. C. Greubel, Oct 05 2023
(SageMath)
def A065919(n): return sum(binomial(n, k)*factorial(n+k)*2^k/factorial(n) for k in range(n+1))
[A065919(n) for n in range(31)] # G. C. Greubel, Oct 05 2023
CROSSREFS
Cf. A143411 (main diagonal), A143412.
Polynomial coefficients are in A001498.
Sequence in context: A217820 A217821 A009825 * A196125 A345103 A096537
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 08 2001
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 06:02 EST 2023. Contains 367541 sequences. (Running on oeis4.)