The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A065919 Bessel polynomial y_n(4). 6
 1, 5, 61, 1225, 34361, 1238221, 54516085, 2836074641, 170218994545, 11577727703701, 880077524475821, 73938089783672665, 6803184337622361001, 680392371852019772765, 73489179344355757819621, 8525425196317119926848801, 1057226213522667226687070945 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Main diagonal of A143411. - Peter Bala, Aug 14 2008 REFERENCES J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77. LINKS Harry J. Smith, Table of n, a(n) for n = 0..100 W. Mlotkowski and A. Romanowicz, A family of sequences of binomial type, Probability and Mathematical Statistics, Vol. 33, Fasc. 2 (2013), pp. 401-408. Index entries for sequences related to Bessel functions or polynomials FORMULA y_n(x) = Sum_{k=0..n} (n+k)!*(x/2)^k/((n-k)!*k!). From Peter Bala, Aug 14 2008: (Start) Recurrence relation: a(0) = 1, a(1) = 5, a(n) = 4*(2*n-1)*a(n-1) + a(n-2) for n >= 2. Sequence A143412(n) satisfies the same recurrence relation. 1/sqrt(e) = 1 - 2*Sum_{n = 0..inf} (-1)^n/(a(n)*a(n+1)) = 1 - 2*( 1/(1*5) - 1/(5*61) + 1/(61*1225) - ... ). (End) G.f.: 1/Q(0), where Q(k)= 1 - x - 4*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 17 2013 a(n) = exp(1/4)/sqrt(2*Pi)*BesselK(n+1/2,1/4). - Gerry Martens, Jul 22 2015 a(n) ~ 2^(3*n+1/2) * n^n / exp(n-1/4). - Vaclav Kotesovec, Jul 22 2015 From Peter Bala, Apr 12 2017: (Start) a(n) = 1/n!*Integral_{x = 0..inf} x^n*(1 + 2*x)^n dx. E.g.f.: d/dx( exp(x*c(2*x)) ) = 1 + 5*x + 61*x^2/2! + 1225*x^3/3! + ..., where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. (End) G.f.: (1/(1-x))*hypergeometric2f0(1,1/2; - ; 8*x/(1-x)^2). - G. C. Greubel, Aug 16 2017 a(n) = 2^n*KummerU(-n, -2*n, 1/2). - Peter Luschny, May 10 2022 MAPLE seq(simplify(2^n*KummerU(-n, -2*n, 1/2)), n=0..16); # Peter Luschny, May 10 2022 MATHEMATICA Table[Sum[(n+k)!*2^k/((n-k)!*k!), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 22 2015 *) PROG (PARI) for (n=0, 100, if (n>1, a=4*(2*n - 1)*a1 + a2; a2=a1; a1=a, if (n, a=a1=5, a=a2=1)); write("b065919.txt", n, " ", a) ) \\ Harry J. Smith, Nov 04 2009 (PARI) a(n) = sum(k=0, n, (n+k)!*2^k/((n-k)!*k!) ); \\ Joerg Arndt, May 17 2013 (Magma) A065919:= func< n | (&+[Binomial(n, k)*Factorial(n+k)*2^k/Factorial(n): k in [0..n]]) >; [A065919(n): n in [0..30]]; // G. C. Greubel, Oct 05 2023 (SageMath) def A065919(n): return sum(binomial(n, k)*factorial(n+k)*2^k/factorial(n) for k in range(n+1)) [A065919(n) for n in range(31)] # G. C. Greubel, Oct 05 2023 CROSSREFS Cf. A001515, A001517, A001518. Cf. A143411 (main diagonal), A143412. Polynomial coefficients are in A001498. Sequence in context: A217820 A217821 A009825 * A196125 A345103 A096537 Adjacent sequences: A065916 A065917 A065918 * A065920 A065921 A065922 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Dec 08 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 06:02 EST 2023. Contains 367541 sequences. (Running on oeis4.)