login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143412 Main diagonal of A143410. 3
1, 3, 37, 743, 20841, 751019, 33065677, 1720166223, 103243039057, 7022246822099, 533794001518581, 44845718374382903, 4126339884444745657, 412678834162848948603, 44573440429472131194781, 5170931768652930067543199, 641240112753392800506551457, 84648865815216502596932335523 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Robert Israel, Table of n, a(n) for n = 0..333

FORMULA

a(n) = (-1)^n*sum {k = 0..n} (-2)^k*(n+k)!/((n-k)!*k!) = (-1)^n*y_n(-4), where y_n(x) denotes the n-th Bessel polynomial.

Recurrence relation: a(0) = 1, a(1) = 3, a(n) = 4*(2*n-1)*a(n-1) + a(n-2) for n >= 2. Sequence A065919 satisfies the same recurrence relation.

Sqrt(e) = 1 + 2*Sum {n >= 0} (-1)^n/(a(n)*a(n+1)) = 1 + 2*(1/(1*3) - 1/(3*37) + 1/(37*743) - ...) (see A019774).

G.f.: 1/Q(0), where Q(k)= 1 + x - 4*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 17 2013

a(n) = (-1)^n * hypergeom([-n,n+1],[],2). - Robert Israel, Jan 03 2016

MAPLE

a := n -> (-1)^n*add ((-2)^k*(n+k)!/((n-k)!*k!), k = 0..n): seq(a(n), n = 0..16);

MATHEMATICA

RecurrenceTable[{ a[n + 2] == 4*(2 n + 3)*a[n + 1] + a[n], a[0] == 1, a[1] == 3}, a, {n, 0, 20}] (* G. C. Greubel, Jan 03 2016 *)

PROG

(PARI) a(n) = (-1)^n*sum(k=0, n, (-2)^k*(n+k)!/((n-k)!*k!) ); \\ Joerg Arndt, May 17 2013

(MAGMA) I:=[1, 3]; [n le 2 select I[n] else 4*(2*n -3)*Self(n - 1) + Self(n-2): n in [1..20]]; // Vincenzo Librandi, Jan 03 2016

CROSSREFS

Cf. A065919, A143410.

Sequence in context: A216696 A245265 A143639 * A003717 A201697 A274308

Adjacent sequences:  A143409 A143410 A143411 * A143413 A143414 A143415

KEYWORD

easy,nonn

AUTHOR

Peter Bala, Aug 14 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 13 10:29 EST 2019. Contains 329093 sequences. (Running on oeis4.)