This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A019774 Decimal expansion of sqrt(e). 40
 1, 6, 4, 8, 7, 2, 1, 2, 7, 0, 7, 0, 0, 1, 2, 8, 1, 4, 6, 8, 4, 8, 6, 5, 0, 7, 8, 7, 8, 1, 4, 1, 6, 3, 5, 7, 1, 6, 5, 3, 7, 7, 6, 1, 0, 0, 7, 1, 0, 1, 4, 8, 0, 1, 1, 5, 7, 5, 0, 7, 9, 3, 1, 1, 6, 4, 0, 6, 6, 1, 0, 2, 1, 1, 9, 4, 2, 1, 5, 6, 0, 8, 6, 3, 2, 7, 7, 6, 5, 2, 0, 0, 5, 6, 3, 6, 6, 6, 4 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Also where x^(x^(-2)) is a maximum. - Robert G. Wilson v, Oct 22 2014 e^(1/2) maximizes the value of x^(c/(x^2)) for any real positive constant c, and minimizes for it for a negative constant, on the range x > 0. - A.H.M. Smeets, Aug 16 2018 LINKS Harry J. Smith, Table of n, a(n) for n = 1..20000 FORMULA sqrt(e) = Sum_{n>=0} 1/(2^n*n!) = Sum_{n>=0} 1/(2n)!!. - Daniel Forgues, Apr 17 2011 sqrt(e) = 1 + Sum_{n>0} Product_{i=1..n} 1/(2n). - Ralf Stephan, Sep 11 2013 Continued fraction representation: sqrt(e) = 1 + 1/(1 + 2/(3 + 4/(5 + ... ))). See A000354 for details. - Peter Bala, Jan 30 2015 sqrt(e) = 1/2*( 1 +(3 +(5 +(7 +...)/6)/4)/2 ) = 1 +(1 +(1 +(1 +...)/6)/4)/2. - Rok Cestnik, Jan 19 2017 EXAMPLE 1.6487212707001281468486507878141635716537761007101480115750... MAPLE evalf(sqrt(exp(1))); # Muniru A Asiru, Aug 16 2018 MATHEMATICA RealDigits[N[Sqrt[E], 200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 21 2011 *) PROG (PARI) { default(realprecision, 20080); x=sqrt(exp(1)); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b019774.txt", n, " ", d)); } \\ Harry J. Smith, May 01 2009 CROSSREFS Cf. A058281 for continued fraction for sqrt(e). Sequence in context: A197833 A176786 A077669 * A254250 A195434 A199815 Adjacent sequences:  A019771 A019772 A019773 * A019775 A019776 A019777 KEYWORD nonn,cons,changed AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 20 23:06 EDT 2018. Contains 313929 sequences. (Running on oeis4.)