login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A019774
Decimal expansion of sqrt(e).
62
1, 6, 4, 8, 7, 2, 1, 2, 7, 0, 7, 0, 0, 1, 2, 8, 1, 4, 6, 8, 4, 8, 6, 5, 0, 7, 8, 7, 8, 1, 4, 1, 6, 3, 5, 7, 1, 6, 5, 3, 7, 7, 6, 1, 0, 0, 7, 1, 0, 1, 4, 8, 0, 1, 1, 5, 7, 5, 0, 7, 9, 3, 1, 1, 6, 4, 0, 6, 6, 1, 0, 2, 1, 1, 9, 4, 2, 1, 5, 6, 0, 8, 6, 3, 2, 7, 7, 6, 5, 2, 0, 0, 5, 6, 3, 6, 6, 6, 4
OFFSET
1,2
COMMENTS
Also where x^(x^(-2)) is a maximum. - Robert G. Wilson v, Oct 22 2014
e^(1/2) maximizes the value of x^(c/(x^2)) for any real positive constant c, and minimizes for it for a negative constant, on the range x > 0. - A.H.M. Smeets, Aug 16 2018
FORMULA
sqrt(e) = Sum_{n>=0} 1/(2^n*n!) = Sum_{n>=0} 1/(2n)!!. - Daniel Forgues, Apr 17 2011
sqrt(e) = 1 + Sum_{n>0} Product_{i=1..n} 1/(2n). - Ralf Stephan, Sep 11 2013
Continued fraction representation: sqrt(e) = 1 + 1/(1 + 2/(3 + 4/(5 + ... ))). See A000354 for details. - Peter Bala, Jan 30 2015
sqrt(e) = (1/2)*( 1 + (3 + (5 + (7 + ...)/6)/4)/2 ) = 1 + (1 + (1 + (1 + ...)/6)/4)/2. - Rok Cestnik, Jan 19 2017
sqrt(e) = 2*Sum_{n >= 0} 1/((1 - 4*n^2)*(2^n)*n!). - Peter Bala, Jan 16 2022
sqrt(e) = (16/31)*(1 + Sum_{n>=1} (1/2)^n*((1/2)*n^3 + (1/2)*n + 1)/n!). - Alexander R. Povolotsky, Jul 01 2022
sqrt(e) = Sum_{n >= 0} (n + 1/2)/(2^n*n!). - Peter Bala, Jun 29 2024
EXAMPLE
1.6487212707001281468486507878141635716537761007101480115750...
MAPLE
evalf(sqrt(exp(1)), 120); # Muniru A Asiru, Aug 16 2018
MATHEMATICA
RealDigits[N[Sqrt[E], 200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 21 2011 *)
PROG
(PARI) default(realprecision, 20080); x=sqrt(exp(1)); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b019774.txt", n, " ", d)); \\ Harry J. Smith, May 01 2009
CROSSREFS
Cf. A001113, A058281 for continued fraction for sqrt(e), A019775.
Sequence in context: A340322 A176786 A077669 * A354630 A254250 A195434
KEYWORD
nonn,cons
STATUS
approved