OFFSET
1,3
COMMENTS
Theorem 1.1 of Hare et al. (2010, 2011) involves a shifted version of this sequence and the Fibonacci sequence A000045. (The program by Alonso del Arte below does involve a shifted version of this sequence.) - Petros Hadjicostas, May 11 2019
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..21
Kevin G. Hare, Ian D. Morris, Nikita Sidorov, and Jacques Theys, An explicit counterexample to the Lagarias-Wang finiteness conjecture, arXiv:1006.2117 [math.OC], 2010-2011.
Kevin G. Hare, Ian D. Morris, Nikita Sidorov, and Jacques Theys, An explicit counterexample to the Lagarias-Wang finiteness conjecture, Advances in Mathematics 226 (2011), 4667-4701.
FORMULA
It appears that lim_{n->infinity} log(a(n))/phi^n = 0.07743008049000107520747623421744398272089261907514..., where phi = (1 + sqrt(5))/2 is the golden ratio A001622. - Petros Hadjicostas and Jon E. Schoenfield, May 11 2019
MATHEMATICA
a[1] = 0; a[2] = 1; a[3] = 2; a[n_] := a[n] = a[n - 1] a[n - 2] - a[n - 3]; Table[a[n], {n, 1, 15}] (* Alonso del Arte, Jan 31 2011 *)
PROG
(Magma) I:=[0, 1, 2]; [n le 3 select I[n] else Self(n-1)*Self(n-2) - Self(n-3): n in [1..15]]; // G. C. Greubel, Mar 01 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Robert G. Wilson v, Jul 05 2000
EXTENSIONS
Name clarified by Michel Marcus, May 10 2019
STATUS
approved