login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022406
a(0)=3, a(1)=7; thereafter a(n) = a(n-1) + a(n-2) + 1.
3
3, 7, 11, 19, 31, 51, 83, 135, 219, 355, 575, 931, 1507, 2439, 3947, 6387, 10335, 16723, 27059, 43783, 70843, 114627, 185471, 300099, 485571, 785671, 1271243, 2056915, 3328159, 5385075, 8713235, 14098311, 22811547, 36909859, 59721407, 96631267, 156352675
OFFSET
0,1
COMMENTS
a(n) is the minimum number of nodes required for a full binary AVL tree of height n+1 whose root node has a balance factor of 0. - Sumukh Patel, Jun 24 2022
FORMULA
a(n) = 4*A000045(n+2) - 1. - Ron Knott, Aug 25 2006
From R. J. Mathar, May 28 2008: (Start)
a(n) = A022403(n+1).
O.g.f.: (3+x-3*x^2)/((1-x)*(1-x-x^2)).
a(n+1) - a(n) = A022087(n+1).
(End)
a(n) = (2^(-n)*(-5*2^n + (10-6*sqrt(5))*(1-sqrt(5))^n + 2*(1+sqrt(5))^n*(5+3*sqrt(5)))) / 5. - Colin Barker, Mar 02 2018
MATHEMATICA
Table[4*Fibonacci[n + 2] - 1, {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jun 28 2011 *)
CoefficientList[Series[(3+x-3*x^2)/((1-x)*(1-x-x^2)), {x, 0, 50}], x] (* G. C. Greubel, Mar 01 2018 *)
PROG
(PARI) for(n=0, 40, print1(4*fibonacci(n+2) -1, ", ")) \\ G. C. Greubel, Mar 01 2018
(Magma) [4*Fibonacci(n+2) - 1: n i [0..40]]; // G. C. Greubel, Mar 01 2018
CROSSREFS
Cf. A000045, A022087, A122195. See A022403 for a very similar sequence.
Sequence in context: A161387 A229086 A354902 * A355288 A132447 A132449
KEYWORD
nonn,easy
STATUS
approved