The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A093847 First column of triangle A093846. 5
 9, 54, 399, 3249, 27999, 249999, 2285713, 21249999, 199999999, 1899999999, 18181818180, 174999999999, 1692307692306, 16428571428570, 159999999999999, 1562499999999999, 15294117647058822, 149999999999999999 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS G. C. Greubel, Table of n, a(n) for n = 1..995 FORMULA a(n) = 10^(n-1) - 1 + floor(9*10^(n-1)/n) = A093846(n, 1). - R. J. Mathar, Jun 23 2006 MAPLE A093847 := proc(n) RETURN (10^(n-1)-1+floor(9*(10^(n-1)/n))); end; for n from 1 to 20 do printf("%d, ", A093847(n)); od; # R. J. Mathar, Jun 23 2006 MATHEMATICA Table[10^(n-1)-1+Floor[9 10^(n-1)/n], {n, 20}] (* Harvey P. Dale, Oct 21 2011 *) PROG (PARI) {a(n) = 10^(n-1) -1 +floor(9*10^(n-1)/n)}; \\ G. C. Greubel, Mar 22 2019 (Magma) [10^(n-1) -1 +Floor(9*10^(n-1)/n): n in [1..20]]; // G. C. Greubel, Mar 22 2019 (Sage) [10^(n-1) -1 +floor(9*10^(n-1)/n) for n in (1..20)] # G. C. Greubel, Mar 22 2019 CROSSREFS Cf. A093846. Sequence in context: A115784 A037599 A037704 * A157539 A205814 A157546 Adjacent sequences: A093844 A093845 A093846 * A093848 A093849 A093850 KEYWORD base,easy,nonn AUTHOR Amarnath Murthy, Apr 18 2004 EXTENSIONS More terms from R. J. Mathar, Jun 23 2006 Edited by David Wasserman, Mar 26 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 22:51 EST 2022. Contains 358421 sequences. (Running on oeis4.)