login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A205814 G.f.: Product_{n>=1} [ (1 - 2^n*x^n) / (1 - (n+2)^n*x^n) ]^(1/n). 8
1, 1, 9, 54, 482, 4239, 55561, 785554, 14133055, 285547760, 6666380256, 172748192767, 4974178683908, 156462697434990, 5354832107694444, 197710292330150160, 7839473395324929677, 332071887435037103895, 14968498613432649146050, 715294449027151380463781 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Here sigma(n,k) equals the sum of the k-th powers of the divisors of n.

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..380

FORMULA

G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=1..n} binomial(n,k) * sigma(n,k) * 2^(n-k) ).

a(n) ~ exp(2) * n^(n-1). - Vaclav Kotesovec, Oct 08 2016

EXAMPLE

G.f.: A(x) = 1 + x + 9*x^2 + 54*x^3 + 482*x^4 + 4239*x^5 + 55561*x^6 +...

where the g.f. equals the product:

A(x) = (1-2*x)/(1-3*x) * ((1-2^2*x^2)/(1-4^2*x^2))^(1/2) * ((1-2^3*x^3)/(1-5^3*x^3))^(1/3) * ((1-2^4*x^4)/(1-6^4*x^4))^(1/4) * ((1-2^5*x^5)/(1-7^5*x^5))^(1/5) *...

The logarithm equals the l.g.f. of A205815:

log(A(x)) = x + 17*x^2/2 + 136*x^3/3 + 1585*x^4/4 + 16986*x^5/5 +...

PROG

(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, x^m/m*sum(k=1, m, binomial(m, k)*sigma(m, k)*2^(m-k))+x*O(x^n))), n)}

(PARI) {a(n)=polcoeff(prod(k=1, n, ((1-2^k*x^k)/(1-(k+2)^k*x^k +x*O(x^n)))^(1/k)), n)}

CROSSREFS

Cf. A205815 (log), A205811, A023881.

Sequence in context: A037704 A093847 A157539 * A157546 A157560 A157588

Adjacent sequences:  A205811 A205812 A205813 * A205815 A205816 A205817

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Feb 01 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 27 10:36 EDT 2022. Contains 357057 sequences. (Running on oeis4.)