login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A205815 a(n) = Sum_{k=1..n} binomial(n,k) * sigma(n,k) * 2^(n-k). 4
1, 17, 136, 1585, 16986, 282338, 4784900, 101750689, 2359918963, 62200943002, 1792160567088, 56765070059074, 1946195069937314, 72080471103535786, 2862427829603121696, 121449533922041845569, 5480386857784931063958, 262149577935595804303451 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Here sigma(n,k) equals the sum of the k-th powers of the divisors of n.

LINKS

Table of n, a(n) for n=1..18.

FORMULA

Logarithmic derivative of A205814.

a(n) = Sum_{d|n} ((d+2)^n - 2^n).

a(n) ~ exp(2) * n^n. - Vaclav Kotesovec, Oct 08 2016

EXAMPLE

L.g.f.: L(x) = x + 17*x^2/2 + 136*x^3/3 + 1585*x^4/4 + 16986*x^5/5 +...

Exponentiation yields the g.f. of A205814:

exp(L(x) = 1 + x + 9*x^2 + 54*x^3 + 482*x^4 + 4239*x^5 + 55561*x^6 +...

Illustration of terms.

a(2) = 2*sigma(2,1)*2 + 1*sigma(2,2)*1 = 2*3*2 + 1*5*1 = 17;

a(3) = 3*sigma(3,1)*4 + 3*sigma(3,2)*2 + 1*sigma(3,3)*1 = 3*4*4 + 3*10*2 + 1*28*1 = 136;

a(4) = 4*sigma(4,1)*8 + 6*sigma(4,2)*4 + 4*sigma(4,3)*2 + 1*sigma(4,3)*1 = 4*7*8 + 6*21*4 + 4*73*2 + 1*273*1 = 1585.

MATHEMATICA

Table[Sum[Binomial[n, k] * DivisorSigma[k, n] * 2^(n-k), {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Oct 08 2016 *)

PROG

(PARI) {a(n)=sum(k=1, n, binomial(n, k)*sigma(n, k)*2^(n-k))}

CROSSREFS

Cf. A205814 (exp), A205812.

Sequence in context: A047642 A010933 A022612 * A060220 A041550 A142788

Adjacent sequences:  A205812 A205813 A205814 * A205816 A205817 A205818

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Feb 01 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 20:12 EST 2019. Contains 329961 sequences. (Running on oeis4.)