This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A205815 a(n) = Sum_{k=1..n} binomial(n,k) * sigma(n,k) * 2^(n-k). 4
 1, 17, 136, 1585, 16986, 282338, 4784900, 101750689, 2359918963, 62200943002, 1792160567088, 56765070059074, 1946195069937314, 72080471103535786, 2862427829603121696, 121449533922041845569, 5480386857784931063958, 262149577935595804303451 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Here sigma(n,k) equals the sum of the k-th powers of the divisors of n. LINKS FORMULA Logarithmic derivative of A205814. a(n) = Sum_{d|n} ((d+2)^n - 2^n). a(n) ~ exp(2) * n^n. - Vaclav Kotesovec, Oct 08 2016 EXAMPLE L.g.f.: L(x) = x + 17*x^2/2 + 136*x^3/3 + 1585*x^4/4 + 16986*x^5/5 +... Exponentiation yields the g.f. of A205814: exp(L(x) = 1 + x + 9*x^2 + 54*x^3 + 482*x^4 + 4239*x^5 + 55561*x^6 +... Illustration of terms. a(2) = 2*sigma(2,1)*2 + 1*sigma(2,2)*1 = 2*3*2 + 1*5*1 = 17; a(3) = 3*sigma(3,1)*4 + 3*sigma(3,2)*2 + 1*sigma(3,3)*1 = 3*4*4 + 3*10*2 + 1*28*1 = 136; a(4) = 4*sigma(4,1)*8 + 6*sigma(4,2)*4 + 4*sigma(4,3)*2 + 1*sigma(4,3)*1 = 4*7*8 + 6*21*4 + 4*73*2 + 1*273*1 = 1585. MATHEMATICA Table[Sum[Binomial[n, k] * DivisorSigma[k, n] * 2^(n-k), {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Oct 08 2016 *) PROG (PARI) {a(n)=sum(k=1, n, binomial(n, k)*sigma(n, k)*2^(n-k))} CROSSREFS Cf. A205814 (exp), A205812. Sequence in context: A047642 A010933 A022612 * A060220 A041550 A142788 Adjacent sequences:  A205812 A205813 A205814 * A205816 A205817 A205818 KEYWORD nonn AUTHOR Paul D. Hanna, Feb 01 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 20:12 EST 2019. Contains 329961 sequences. (Running on oeis4.)