login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A205818
Number of (n+1) X 4 0..2 arrays with the number of clockwise edge increases in every 2 X 2 subblock unequal to the number of counterclockwise edge increases.
1
180, 714, 2880, 12318, 53100, 230532, 1002240, 4361064, 18980472, 82617132, 359622708, 1565418528, 6814215036, 29662110636, 129118523304, 562050276348, 2446593518052, 10649972628456, 46359118343628, 201800318106108
OFFSET
1,1
COMMENTS
Column 3 of A205823.
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) + 10*a(n-2) - 13*a(n-3) - 25*a(n-4) + 12*a(n-5) + 18*a(n-6) - 2*a(n-8).
Empirical g.f.: 6*x*(30 + 29*x - 177*x^2 - 187*x^3 + 188*x^4 + 197*x^5 - 5*x^6 - 23*x^7) / ((1 - x - x^2)*(1 - 2*x - 11*x^2 + 14*x^4 + 2*x^5 - 2*x^6)). - Colin Barker, Jun 12 2018
EXAMPLE
Some solutions for n=4:
..1..0..0..2....0..0..2..2....2..2..2..0....1..1..1..0....1..2..1..1
..1..2..1..2....2..1..1..0....1..0..1..0....2..0..2..2....1..0..0..2
..1..0..1..0....2..0..2..2....1..2..1..2....2..1..1..0....2..2..1..1
..2..0..2..2....1..1..1..0....0..2..0..2....2..0..2..2....1..0..0..2
..2..1..1..0....2..0..2..0....0..1..1..1....2..1..1..0....1..2..1..2
CROSSREFS
Cf. A205823.
Sequence in context: A211552 A004532 A143793 * A259312 A032774 A032776
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 01 2012
STATUS
approved