login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A032774
a(n) = floor( n*(n+1)*(n+2)*...*(n+6) / (n+(n+1)+(n+2)+...+(n+6)) ).
3
0, 180, 1152, 4320, 12342, 29700, 63360, 123552, 224640, 386100, 633600, 1000182, 1527552, 2267460, 3283200, 4651200, 6462720, 8825652, 11866422, 15732000, 20592000, 26640900, 34100352, 43221600, 54288000, 67617642, 83566080, 102529152, 124945920, 151301700, 182131200
OFFSET
0,2
COMMENTS
In general, such sequences a(n) = floor((Product_{m=0..k} n+i) / (Sum_{m=0..k} n+i)) have rational generating functions. - Georg Fischer, Feb 23 2021
LINKS
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1,1,-6,15,-20,15,-6,1).
MAPLE
seq(coeff(series( -(6*x^10-36*x^9 + 90*x^8 - 120*x^7 - 90*x^6 - 108*x^5 - 102*x^4 - 108*x^3 - 72*x^2 - 180*x) / (-x^13+6*x^12 - 15*x^11+20*x^10 - 15*x^9+6*x^8 - x^7+x^6 - 6*x^5+15*x^4 - 20*x^3+15*x^2 - 6*x + 1) , x, n+1), x, n), n = 0..40); # Georg Fischer, Feb 23 2021
MATHEMATICA
Table[Floor[(Times @@ Range[n, n + 6])/(7 n + 21)], {n, 0, 30}] (* Harvey P. Dale, May 16 2020 *)
CROSSREFS
Cf. A004526 (k=2), A032765 (k=3), A032768 (k=4), A032771 (k=5), A032774 (k=6), A032777 (k=7), A032780 (k=8), A032790 (k=9).
Sequence in context: A143793 A205818 A259312 * A032776 A251255 A251204
KEYWORD
nonn,easy
AUTHOR
Patrick De Geest, May 15 1998
EXTENSIONS
More terms from Georg Fischer, Feb 23 2021
STATUS
approved