login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308294
a(n) = Sum_{i_1=0..3} Sum_{i_2=0..3} ... Sum_{i_n=0..3} multinomial(i_1+i_2+...+i_n; i_1, i_2, ... , i_n).
2
1, 4, 69, 5248, 1107697, 492911196, 396643610629, 522506795651464, 1050188527130093313, 3055485688346936896372, 12353356560641179964896741, 67171925010307462937573055504, 478268992794023738033117638364209, 4360663458863998067849091605547380428
OFFSET
0,2
LINKS
FORMULA
a(n) ~ sqrt(Pi) * 3^(2*n + 1/2) * n^(3*n + 1/2) / (2^(n - 1/2) * exp(3*n - 1)). - Vaclav Kotesovec, May 24 2020
EXAMPLE
a(2) = binomial(0+0,0) + binomial(0+1,1) + binomial(0+2,2) + binomial(0+3,3) + binomial(1+0,0) + binomial(1+1,1) + binomial(1+2,2) + binomial(1+3,3) + binomial(2+0,0) + binomial(2+1,1) + binomial(2+2,2) + binomial(2+3,3) + binomial(3+0,0) + binomial(3+1,1) + binomial(3+2,2) + binomial(3+3,3) = 69.
MATHEMATICA
Table[Total[CoefficientList[Series[(1 + x + x^2/2 + x^3/6)^n, {x, 0, 3*n}], x]*Range[0, 3*n]!], {n, 0, 15}] (* Vaclav Kotesovec, May 24 2020 *)
PROG
(PARI) {a(n) = sum(i=0, 3*n, i!*polcoef(sum(j=0, 3, x^j/j!)^n, i))}
CROSSREFS
Row n=3 of A308292.
Sequence in context: A248027 A093852 A065573 * A278553 A101841 A274873
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 19 2019
STATUS
approved