login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308295
a(n) = Sum_{i_1=0..4} Sum_{i_2=0..4} ... Sum_{i_n=0..4} multinomial(i_1 + i_2 + ... + i_n; i_1, i_2, ..., i_n).
2
1, 5, 251, 110251, 191448941, 904434761801, 9459612561834055, 191593734298902552191, 6835386432791154682927481, 400218584926232312004573701101, 36402864165071086859006490971345651, 4922828438813493756340086555005103394355
OFFSET
0,2
LINKS
FORMULA
a(2) = binomial(0+0,0) + binomial(0+1,1) + binomial(0+2,2) + binomial(0+3,3) + binomial(0+4,4) + binomial(1+0,0) + binomial(1+1,1) + binomial(1+2,2) + binomial(1+3,3) + binomial(1+4,4) + binomial(2+0,0) + binomial(2+1,1) + binomial(2+2,2) + binomial(2+3,3) + binomial(2+4,4) + binomial(3+0,0) + binomial(3+1,1) + binomial(3+2,2) + binomial(3+3,3) + binomial(3+4,4) + binomial(4+0,0) + binomial(4+1,1) + binomial(4+2,2) + binomial(4+3,3) + binomial(4+4,4) = 251.
a(n) ~ sqrt(Pi) * 2^(5*n + 3/2) * n^(4*n + 1/2) / (3^n * exp(4*n - 1)). - Vaclav Kotesovec, May 24 2020
MATHEMATICA
Table[Total[CoefficientList[Series[(1 + x + x^2/2 + x^3/6 + x^4/24)^n, {x, 0, 4*n}], x] * Range[0, 4*n]!], {n, 0, 15}] (* Vaclav Kotesovec, May 24 2020 *)
PROG
(PARI) {a(n) = sum(i=0, 4*n, i!*polcoef(sum(j=0, 4, x^j/j!)^n, i))}
CROSSREFS
Row n=4 of A308292.
Sequence in context: A198600 A213446 A276485 * A060943 A336295 A332125
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 19 2019
STATUS
approved