The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A248027 Sum over each antidiagonal of A248017. 6
 0, 0, 0, 4, 69, 554, 3100, 13288, 47492, 147050, 407568, 1030912, 2419025, 5324684, 11099416, 22065120, 42085344, 77378556, 137705904, 237996060, 400624581, 658434694, 1058839380, 1669118984, 2583424948, 3931632406, 5890783808, 8699293304, 12674960961 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 LINKS Christopher Hunt Gribble, Table of n, a(n) for n = 1..10000 FORMULA Empirically, a(n) = (2*n^11 + 22*n^10 + 22*n^9 - 462*n^8 - 1122*n^7 + 7392*n^6 - 3509*n^5 - 25663*n^4 + 48950*n^3 - 22869*n^2 - 65133*n + 41580 - (693*n^5 + 3465*n^4 - 6930*n^3 - 45045*n^2 + 27027*n + 41580)*(-1)^n)/2661120. Empirical g.f.: -x^4*(x^11 + 2*x^10 - 7*x^9 - 10*x^8 - 28*x^7 - 170*x^6 - 484*x^5 - 538*x^4 - 461*x^3 - 176*x^2 - 45*x - 4) / ((x - 1)^12*(x + 1)^6). - Colin Barker, Apr 21 2015 EXAMPLE a(1)..a(9) are formed as follows: .             Antidiagonals of A248017                 n   a(n) .                         0                             1      0 .                      0     0                          2      0 .                   0     0     0                       3      0 .                0     2     2     0                    4      4 .             1    14    39    14     1                 5     69 .          3    66   208   208    66     3              6    554 .      12   198   794  1092   794   198    12           7   3100 .   28   508  2196  3912  3912  2196   508    28        8  13288 .66  1092  5231 10626 13462 10626  5231  1092    66     9  47492 MAPLE b := proc (n::integer, k::integer)::integer;   (4*k^5*n^5 - 40*k^4*n^4 + 140*k^3*n^3 + 2*k^5 + 20*k^4*n    + 30*k^3*n^2 + 30*k^2*n^3 + 20*k*n^4 + 2*n^5 - 40*k^4    - 120*k^3*n - 185*k^2*n^2 - 120*k*n^3 - 40*n^4 + 160*k^3    - 20*k^2*n - 20*k*n^2 + 160*n^3 - 80*k^2 + 36*k*n - 80*n^2    + 48*k + 48*n + 45    + (- 30*k^2*n^3 - 20*k*n^4 - 2*n^5 - 15*k^2*n^2 + 120*k*n^3       + 40*n^4 + 20*k*n^2 - 160*n^3 + 60*k*n + 80*n^2 - 48*n       - 45)*(-1)^k    + (- 2*k^5 - 20*k^4*n - 30*k^3*n^2 + 40*k^4 + 120*k^3*n       - 15*k^2*n^2 - 160*k^3 + 20*k^2*n + 80*k^2 + 60*k*n - 48*k       - 45)*(-1)^n    + (15*k^2*n^2 - 60*k*n + 45)*(-1)^k*(-1)^n)/1920; end proc; for j to 10000 do   a := 0;   for k from j by -1 to 1 do     n := j-k+1;     a := a+b(n, k);   end do; printf("%d, ", a); end do; CROSSREFS Cf. A248017. Sequence in context: A174809 A125587 A134794 * A093852 A065573 A308294 Adjacent sequences:  A248024 A248025 A248026 * A248028 A248029 A248030 KEYWORD nonn AUTHOR Christopher Hunt Gribble, Sep 30 2014 EXTENSIONS Terms corrected and extended by Christopher Hunt Gribble, Apr 17 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 16:44 EST 2021. Contains 349430 sequences. (Running on oeis4.)