login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123618
a(n) = A123610(2*n+2,n).
6
1, 4, 39, 392, 4420, 52272, 644231, 8179600, 106376580, 1410528080, 19006875580, 259613952864, 3587352778256, 50068405195200, 704925148185495, 10001318622631200, 142866058397606500, 2053248549639210000
OFFSET
0,2
COMMENTS
Related sequences: A123610(2n,n) = A123617(n); A123610(2n+1,n) = A000891(n); A123610(2n+2,n)/(n+1) = A123619(n). a(n) is divisible by (n+1): a(n)/(n+1) = A123619(n).
LINKS
MATHEMATICA
T[_, 0] = 1; T[n_, k_] := 1/n DivisorSum[n, If[GCD[k, #] == #, EulerPhi[#]*Binomial[n/#, k/#]^2, 0] &];
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* A123610 *)
Table[T[2*n, n], {n, 0, 50}] (* A123617 *)
Table[T[2*n + 2, n], {n, 0, 50}] (* A123618 *)
Table[T[2*n + 2, n]/(n+1), {n, 0, 50}] (* A123619 *)
(* G. C. Greubel, Oct 26 2017 *)
PROG
(PARI) {a(n)=if(n==0, 1, (1/(2*n+2))*sumdiv(2*n+2, d, if(gcd(n, d)==d, eulerphi(d)*binomial((2*n+2)/d, n/d)^2, 0)))}
CROSSREFS
Cf. A123610 (triangle); A123617, A000891, A123619.
Sequence in context: A093851 A224755 A241075 * A199757 A046449 A203211
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 03 2006
STATUS
approved