login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123619
a(n) = A123610(2*n+2,n)/(n+1) = A123618(n)/(n+1).
4
1, 2, 13, 98, 884, 8712, 92033, 1022450, 11819620, 141052808, 1727897780, 21634496072, 275950213712, 3576314656800, 46995009879033, 625082413914450, 8403885788094500, 114069363868845000, 1561609591376307572
OFFSET
0,2
COMMENTS
Related sequences: A123610(2n,n) = A123617(n); A123610(2n+1,n) = A000891(n); A123610(2n+2,n) = A123618(n).
LINKS
MATHEMATICA
T[_, 0] = 1; T[n_, k_] := 1/n DivisorSum[n, If[GCD[k, #] == #, EulerPhi[#]*Binomial[n/#, k/#]^2, 0] &];
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* A123610 *)
Table[T[2*n, n], {n, 0, 50}] (* A123617 *)
Table[T[2*n + 2, n], {n, 0, 50}] (* A123618 *)
Table[T[2*n + 2, n]/(n+1), {n, 0, 50}] (* A123619 *)
(* G. C. Greubel, Oct 26 2017 *)
PROG
(PARI) {a(n)=if(n==0, 1, (1/(2*(n+1)^2))*sumdiv(2*n+2, d, if(gcd(n, d)==d, eulerphi(d)*binomial((2*n+2)/d, n/d)^2, 0)))}
CROSSREFS
Cf. A123610 (triangle); A123617, A000891, A123618.
Sequence in context: A340451 A064325 A365155 * A341954 A187746 A030519
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 03 2006
STATUS
approved