login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341954
G.f. A(x) satisfies: A(x) = 1/((1-x*B(x)^2)*(1-x*C(x)^3)) such that B(x) = 1/((1-x*A(x))*(1-x*C(x)^3)) and C(x) = 1/((1-x*A(x))*(1-x*B(x)^2)) are the g.f.s of A341955 and A341956, respectively.
2
1, 2, 13, 99, 839, 7606, 72190, 708294, 7126305, 73125017, 762337935, 8051642336, 85971106450, 926481778388, 10064065073450, 110080177918855, 1211363817278035, 13401851361051323, 148978925959605763, 1663181275248666597
OFFSET
0,2
FORMULA
G.f. A(x) and related series B(x) and C(x) satisfy:
(1a) A(x) = 1/((1 - x*B(x)^2)*(1 - x*C(x)^3)),
(1b) B(x) = 1/((1 - x*A(x))*(1 - x*C(x)^3)),
(1c) C(x) = 1/((1 - x*A(x))*(1 - x*B(x)^2)).
(2a) A(x) = B(x)*C(x) * (1 - x*A(x))^2,
(2b) B(x) = A(x)*C(x) * (1 - x*B(x)^2)^2,
(2c) C(x) = A(x)*B(x) * (1 - x*C(x)^3)^2.
(3a) A(x)/(1 - x*A(x)) = B(x)/(1 - x*B(x)^2) = C(x)/(1 - x*C(x)^3) = sqrt(A(x)*B(x)*C(x)),
(3b) A(x)*B(x)*C(x) = 1/((1-x*A(x))^2*(1-x*B(x)^2)^2*(1-x*C(x)^3)^2).
EXAMPLE
G.f.: A(x) = 1 + 2*x + 13*x^2 + 99*x^3 + 839*x^4 + 7606*x^5 + 72190*x^6 + 708294*x^7 + 7126305*x^8 + 73125017*x^9 + 762337935*x^10 + ...
such that A(x) = 1/((1-x*B(x)^2)*(1-x*C(x)^3)) where
B(x) = 1 + 2*x + 11*x^2 + 80*x^3 + 659*x^4 + 5865*x^5 + 54954*x^6 + 534087*x^7 + 5334509*x^8 + 54423368*x^9 + 564713959*x^10 + ...
C(x) = 1 + 2*x + 9*x^2 + 61*x^3 + 489*x^4 + 4283*x^5 + 39702*x^6 + 382899*x^7 + 3802403*x^8 + 38618535*x^9 + 399277260*x^10 + ...
RELATED SERIES.
A(x)*B(x)*C(x) = 1 + 6*x + 45*x^2 + 380*x^3 + 3438*x^4 + 32584*x^5 + 319358*x^6 + 3210482*x^7 + 32921947*x^8 + 343030506*x^9 + ...
sqrt(A(x)*B(x)*C(x)) = 1 + 3*x + 18*x^2 + 136*x^3 + 1149*x^4 + 10397*x^5 + 98558*x^6 + 966157*x^7 + 9714366*x^8 + 99631288*x^9 + ...
where
sqrt(A(x)*B(x)*C(x)) = A(x)/(1-x*A(x)) = B(x)/(1-x*B(x)^2) = C(x)/(1-x*C(x)^3).
A(x)^2 = 1 + 4*x + 30*x^2 + 250*x^3 + 2243*x^4 + 21142*x^5 + 206419*x^6 + 2069226*x^7 + 21172635*x^8 + 220227386*x^9 + ...
B(x)^2 = 1 + 4*x + 26*x^2 + 204*x^3 + 1759*x^4 + 16126*x^5 + 154266*x^6 + 1522460*x^7 + 15387035*x^8 + 158457396*x^9 + ...
C(x)^2 = 1 + 4*x + 22*x^2 + 158*x^3 + 1303*x^4 + 11620*x^5 + 109059*x^6 + 1061358*x^7 + 10612685*x^8 + 108371282*x^9 + ...
C(x)^3 = 1 + 6*x + 39*x^2 + 299*x^3 + 2550*x^4 + 23229*x^5 + 221256*x^6 + 2176734*x^7 + 21947076*x^8 + 225589243*x^9 + ...
PROG
(PARI) {a(n) = my(A=1, B=1, C=1); for(i=1, n,
A = 1/((1-x*B^2)*(1-x*C^3) +x*O(x^n));
B = 1/((1-x*A^1)*(1-x*C^3) +x*O(x^n));
C = 1/((1-x*A^1)*(1-x*B^2) +x*O(x^n)); );
polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A341955 (B(x)), A341956 (C(x)).
Sequence in context: A064325 A365155 A123619 * A187746 A030519 A141116
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 25 2021
STATUS
approved