login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341955
G.f. B(x) satisfies: B(x) = 1/((1-x*A(x))*(1-x*C(x)^3)) such that A(x) = 1/((1-x*B(x)^2)*(1-x*C(x)^3)) and C(x) = 1/((1-x*A(x))*(1-x*B(x)^2)) are the g.f.s of A341954 and A341956, respectively.
2
1, 2, 11, 80, 659, 5865, 54954, 534087, 5334509, 54423368, 564713959, 5941244370, 63230204938, 679510980507, 7363532850004, 80372780735971, 882818219523503, 9751004973855748, 108236495732967482, 1206750569591821120, 13507907804245679450
OFFSET
0,2
FORMULA
G.f. B(x) and related series A(x) and C(x) satisfy:
(1a) A(x) = 1/((1 - x*B(x)^2)*(1 - x*C(x)^3)),
(1b) B(x) = 1/((1 - x*A(x))*(1 - x*C(x)^3)),
(1c) C(x) = 1/((1 - x*A(x))*(1 - x*B(x)^2)).
(2a) A(x) = B(x)*C(x) * (1 - x*A(x))^2,
(2b) B(x) = A(x)*C(x) * (1 - x*B(x)^2)^2,
(2c) C(x) = A(x)*B(x) * (1 - x*C(x)^3)^2.
(3a) A(x)/(1 - x*A(x)) = B(x)/(1 - x*B(x)^2) = C(x)/(1 - x*C(x)^3) = sqrt(A(x)*B(x)*C(x)),
(3b) A(x)*B(x)*C(x) = 1/((1-x*A(x))^2*(1-x*B(x)^2)^2*(1-x*C(x)^3)^2).
EXAMPLE
G.f.: B(x) = 1 + 2*x + 11*x^2 + 80*x^3 + 659*x^4 + 5865*x^5 + 54954*x^6 + 534087*x^7 + 5334509*x^8 + 54423368*x^9 + 564713959*x^10 + ...
such that B(x) = 1/((1 - x*A(x))*(1 - x*C(x)^3)) where
A(x) = 1 + 2*x + 13*x^2 + 99*x^3 + 839*x^4 + 7606*x^5 + 72190*x^6 + 708294*x^7 + 7126305*x^8 + 73125017*x^9 + 762337935*x^10 + ...
C(x) = 1 + 2*x + 9*x^2 + 61*x^3 + 489*x^4 + 4283*x^5 + 39702*x^6 + 382899*x^7 + 3802403*x^8 + 38618535*x^9 + 399277260*x^10 + ...
RELATED SERIES.
A(x)*B(x)*C(x) = 1 + 6*x + 45*x^2 + 380*x^3 + 3438*x^4 + 32584*x^5 + 319358*x^6 + 3210482*x^7 + 32921947*x^8 + 343030506*x^9 + ...
sqrt(A(x)*B(x)*C(x)) = 1 + 3*x + 18*x^2 + 136*x^3 + 1149*x^4 + 10397*x^5 + 98558*x^6 + 966157*x^7 + 9714366*x^8 + 99631288*x^9 + ...
where
sqrt(A(x)*B(x)*C(x)) = A(x)/(1-x*A(x)) = B(x)/(1-x*B(x)^2) = C(x)/(1-x*C(x)^3).
A(x)^2 = 1 + 4*x + 30*x^2 + 250*x^3 + 2243*x^4 + 21142*x^5 + 206419*x^6 + 2069226*x^7 + 21172635*x^8 + 220227386*x^9 + ...
B(x)^2 = 1 + 4*x + 26*x^2 + 204*x^3 + 1759*x^4 + 16126*x^5 + 154266*x^6 + 1522460*x^7 + 15387035*x^8 + 158457396*x^9 + ...
C(x)^2 = 1 + 4*x + 22*x^2 + 158*x^3 + 1303*x^4 + 11620*x^5 + 109059*x^6 + 1061358*x^7 + 10612685*x^8 + 108371282*x^9 + ...
C(x)^3 = 1 + 6*x + 39*x^2 + 299*x^3 + 2550*x^4 + 23229*x^5 + 221256*x^6 + 2176734*x^7 + 21947076*x^8 + 225589243*x^9 + ...
PROG
(PARI) {a(n) = my(A=1, B=1, C=1); for(i=1, n,
A = 1/((1-x*B^2)*(1-x*C^3) +x*O(x^n));
B = 1/((1-x*A^1)*(1-x*C^3) +x*O(x^n));
C = 1/((1-x*A^1)*(1-x*B^2) +x*O(x^n)); );
polcoeff(B, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A341954 (A(x)), A341956 (C(x)).
Sequence in context: A320095 A099661 A027110 * A118969 A181068 A056846
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 25 2021
STATUS
approved