login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320095
Number of primitive (=aperiodic) n-ary words with length less than or equal to n which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.
3
1, 2, 11, 79, 773, 9281, 137191, 2396150, 48426649, 1111099879, 28531150811, 810554312866, 25239591811405, 854769747700454, 31278135014945519, 1229782937960902111, 51702516367459973873, 2314494592652832016030, 109912203092221714132219, 5518821052631039996623577
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{j=1..n} Sum_{d|j} n^(d-1) * mu(j/d).
a(n) = A143327(n,n).
a(n) = Sum_{j=1..n} A143325(j,n).
a(n) = A143326(n,n) / n.
a(n) = [x^n] (1/(1 - x)) * Sum_{k>=1} mu(k) * x^k / (1 - n*x^k). - Ilya Gutkovskiy, Feb 16 2020
MAPLE
b:= (n, k)-> add(`if`(d=n, k^(n-1), -b(d, k)), d=numtheory[divisors](n)):
g:= proc(n, k) option remember; b(n, k)+`if`(n<2, 0, g(n-1, k)) end:
a:= n-> g(n$2):
seq(a(n), n=1..23);
MATHEMATICA
a[n_] := Sum[n^(d-1)*MoebiusMu[j/d], {j, 1, n}, {d, Divisors[j]}];
Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Oct 25 2022, after A143327 *)
PROG
(PARI) a(n) = sum(j=1, n, sumdiv(j, d, n^(d-1) * moebius(j/d))); \\ Michel Marcus, Feb 16 2020
CROSSREFS
Main diagonal of A143327.
Sequence in context: A253256 A163203 A142722 * A099661 A027110 A341955
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 05 2018
STATUS
approved