login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341958
G.f. A(x) satisfies: Sum_{n>=0} x^n*A(x)^n/(1 - x*A(x)^(n+4)) = Sum_{n>=0} x^n*A(x)^(2*n)/(1 - x*A(x)^(5*n+3)).
1
1, 2, 24, 460, 10480, 262264, 6968920, 193069480, 5515713624, 161332352440, 4807707617064, 145452700810040, 4455938243565144, 137951634380458936, 4309354120105494920, 135662827893112703864, 4299732712210509636536, 137088360221810475982712
OFFSET
0,2
FORMULA
Given g.f. A(x), the following sums are all equal:
(1) B(x) = Sum_{n>=0} x^n*A(x)^n/(1 - x*A(x)^(n+4)),
(2) B(x) = Sum_{n>=0} x^n*A(x)^(2*n)/(1 - x*A(x)^(5*n+3)),
(3) B(x) = Sum_{n>=0} x^n*A(x)^(3*n)/(1 - x*A(x)^(5*n+2)),
(4) B(x) = Sum_{n>=0} x^n*A(x)^(4*n)/(1 - x*A(x)^(n+1)),
(5) B(x) = Sum_{n>=0} x^(2*n) * A(x)^(n^2+5*n) * (1 - x^2*A(x)^(2*n+5)) / ((1 - x*A(x)^(n+1))*(1 - x*A(x)^(n+4))),
(6) B(x) = Sum_{n>=0} x^(2*n) * A(x)^(5*n^2+5*n) * (1 - x^2*A(x)^(10*n+5)) / ((1 - x*A(x)^(5*n+2))*(1 - x*A(x)^(5*n+3)));
see the example section for the value of B(x).
EXAMPLE
G.f.: A(x) = 1 + 2*x + 24*x^2 + 460*x^3 + 10480*x^4 + 262264*x^5 + 6968920*x^6 + 193069480*x^7 + 5515713624*x^8 + 161332352440*x^9 + 4807707617064*x^10 + ...
such that
B(x) = 1/(1-x*A(x)^4) + x*A(x)/(1 - x*A(x)^5) + x^2*A(x)^2/(1 - x*A(x)^6) + x^3*A(x)^3/(1 - x*A(x)^7) + x^4*A(x)^4/(1 - x*A(x)^8) + ...
and
B(x) = 1/(1-x*A(x)^3) + x*A(x)^2/(1 - x*A(x)^8) + x^2*A(x)^4/(1 - x*A(x)^13) + x^3*A(x)^6/(1 - x*A(x)^18) + x^4*A(x)^8/(1 - x*A(x)^23) + ...
also
B(x) = 1/(1-x*A(x)^2) + x*A(x)^3/(1 - x*A(x)^7) + x^2*A(x)^6/(1 - x*A(x)^12) + x^3*A(x)^9/(1 - x*A(x)^17) + x^4*A(x)^12/(1 - x*A(x)^22) + ...
further
B(x) = 1/(1-x*A(x)) + x*A(x)^4/(1 - x*A(x)^2) + x^2*A(x)^8/(1 - x*A(x)^3) + x^3*A(x)^12/(1 - x*A(x)^4) + x^4*A(x)^16/(1 - x*A(x)^5) + ...
where
B(x) = 1 + 2*x + 13*x^2 + 180*x^3 + 3541*x^4 + 81806*x^5 + 2066157*x^6 + 55253320*x^7 + 1537808581*x^8 + 44084046546*x^9 + 1292851214781*x^10 + ...
PROG
(PARI) {a(n) = my(A=[1, 2]); for(i=1, n, A=concat(A, 0); H=A; A=concat(A, 0);
H[#A-1] = -polcoeff( sum(m=0, #A, x^m*Ser(A)^m/(1 - x*Ser(A)^(m+4)) ) - sum(m=0, #A, x^m*Ser(A)^(2*m)/(1 - x*Ser(A)^(5*m+3)) ), #A)/4; A=H); A[n+1] }
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A228843 A317662 A334025 * A360975 A052712 A133413
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 10 2021
STATUS
approved