login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228843
a(n) = 4^n*A228842(n).
1
2, 24, 448, 9216, 192512, 4030464, 84410368, 1767899136, 37027315712, 775510032384, 16242492571648, 340187179646976, 7124972786941952, 149227367389200384, 3125458558976524288, 65460453902527758336, 1371021545886168645632, 28715048051506270961664
OFFSET
0,1
COMMENTS
Bhadouria et al. call this the 4-binomial transform of the 4-Lucas sequence.
Binomial transform of the binomial transform of the binomial transform of A087215.
LINKS
P. Bhadouria, D. Jhala, B. Singh, Binomial Transforms of the k-Lucas Sequences and its Properties, The Journal of Mathematics and Computer Science (JMCS), Volume 8, Issue 1, Pages 81-92; sequence T_4.
FORMULA
G.f.: 2*( 1-12*x ) / ( 1-24*x+64*x^2 ).
a(n) = 2*A098647(n).
a(n) = A000302(n)*A228842(n). - Omar E. Pol, Nov 10 2013
From Colin Barker, Sep 23 2017: (Start)
a(n) = 24*a(n-1) - 64*a(n-2) for n>1.
a(n) = (12-4*sqrt(5))^n + (4*(3+sqrt(5)))^n.
(End)
MATHEMATICA
LinearRecurrence[{24, -64}, {2, 24}, 20] (* Harvey P. Dale, Jul 04 2022 *)
PROG
(PARI) Vec(2*(1 - 12*x) / (1 - 24*x + 64*x^2 ) + O(x^30)) \\ Colin Barker, Sep 23 2017
CROSSREFS
Sequence in context: A370847 A304318 A337505 * A317662 A334025 A341958
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Nov 10 2013
STATUS
approved