login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228840
a(n) = 3^n*A228569(n).
0
2, 15, 171, 2160, 27783, 358425, 4626234, 59716035, 770832207, 9950150160, 128439782811, 1657942687845, 21401266181778, 276254540154855, 3565983915414819, 46030886147041200, 594181726489417887, 7669891971371155905, 99005472955353055626
OFFSET
0,1
COMMENTS
Bhadouria et al. call this the 3-binomial transform of the 3-Lucas sequence.
LINKS
P. Bhadouria, D. Jhala, B. Singh, Binomial Transforms of the k-Lucas Sequences and its Properties, The Journal of Mathematics and Computer Science (JMCS), Volume 8, Issue 1, Pages 81-92; sequence T_3.
FORMULA
G.f.: ( 2-15*x ) / ( 1-15*x+27*x^2 ).
Binomial transform of the binomial transform of A057076.
MATHEMATICA
LinearRecurrence[{15, -27}, {2, 15}, 30] (* Harvey P. Dale, May 20 2018 *)
CROSSREFS
Sequence in context: A324151 A262035 A264793 * A117667 A360483 A222920
KEYWORD
easy,nonn
AUTHOR
R. J. Mathar, Nov 10 2013
STATUS
approved