login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A324151 a(n) = (2/((n+1)*(n+2)))*multinomial(3*n;n,n,n). 2
1, 2, 15, 168, 2310, 36036, 612612, 11085360, 210344706, 4143153300, 84106011990, 1750346095680, 37194854533200, 804553314979680, 17671438882589400, 393345439598342880, 8858467087621013610, 201578121034100464500, 4629577513083174001350, 107211268724031397926000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) is an integer, because as Fredes and Sepulveda show, it gives the number of spanning tree decorated quadrangulations rooted in the tree.

For a direct proof, a(n) may also be written as (binomial(3*n,n)/(2*n+1))*(binomial(2*n+2,n)/(n+1)) = A001764(n)*A000108(n+1), and so is an integer. - N. J. A. Sloane, Mar 01 2019

LINKS

Michael De Vlieger, Table of n, a(n) for n = 0..704

Luis Fredes and Avelio Sepulveda, Tree-decorated planar maps, arXiv:1901.04981 [math.CO], 2019. See Remark 4.6.

MAPLE

a:= n-> (2/((n+1)*(n+2)))*combinat[multinomial](3*n, n$3):

seq(a(n), n=0..20);  # Alois P. Heinz, Jan 25 2022

MATHEMATICA

c[m_, n_] := m Product[1/(n + i), {i, m}] (Multinomial @@ ConstantArray[n, m + 1]); Array[c[2, #] &, 20, 0] (* Michael De Vlieger, Mar 01 2019 *)

PROG

(Python)

from sympy.ntheory import multinomial_coefficients

def A324151(n): return 2*multinomial_coefficients(3, 3*n)[(n, n, n)]//(n+1)//(n+2) # Chai Wah Wu, Jan 25 2022

CROSSREFS

Cf. A000108, A001764, A324152.

Sequence in context: A140809 A153852 A177396 * A262035 A264793 A228840

Adjacent sequences:  A324148 A324149 A324150 * A324152 A324153 A324154

KEYWORD

nonn

AUTHOR

Michael De Vlieger and N. J. A. Sloane, Mar 01 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 21:56 EDT 2022. Contains 354092 sequences. (Running on oeis4.)