login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153852
Nonzero coefficients of g.f.: A(x) = G(G(x)) where G(x) = x + G(G(x))^3 is the g.f. of A153851.
4
1, 2, 15, 165, 2213, 33693, 561867, 10053141, 190489374, 3788856192, 78613758564, 1693737431667, 37760673462507, 868775517322730, 20583609967109565, 501340716386677815, 12535093359045980151, 321360932709750239226
OFFSET
1,2
FORMULA
G.f.: A(x) = Sum_{n>=0} a(2n+1)*x^(2n+1) = G(G(x)) where G(x) is the g.f. of A153851.
G.f.: A(x) = G(x) + G(G(G(x)))^3 where G(x) is the g.f. of A153851 and G(G(G(x))) is the g.f. of A153853.
EXAMPLE
G.f.: A(x) = x + 2*x^3 + 15*x^5 + 165*x^7 + 2213*x^9 + ...
A(x)^3 = x^3 + 6*x^5 + 57*x^7 + 683*x^9 + 9474*x^11 + 145815*x^13 + ...
A(x) = G(G(x)) where
G(x) = x + x^3 + 6*x^5 + 57*x^7 + 683*x^9 + 9474*x^11 + ...
Also, A(x) = G(x) + G(G(G(x)))^3 where G(G(G(x))) begins
G(G(G(x))) = x + 3*x^3 + 27*x^5 + 339*x^7 + 5067*x^9 + 84738*x^11 + ... + A153853(n)*x^(2*n-1) + ...
G(G(G(x)))^3 = x^3 + 9*x^5 + 108*x^7 + 1530*x^9 + 24219*x^11 + ...
PROG
(PARI) {a(n)=local(G=x+O(x^(2*n+1))); for(i=0, n, G=serreverse(x-G^3)); polcoeff(subst(G, x, G), 2*n-1)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 21 2009
EXTENSIONS
Formula corrected by Paul D. Hanna, Dec 07 2009
STATUS
approved