login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177396
G.f. satisfies: x = A(x) - 2*A(A(x))^2 + A(A(A(x)))^3.
3
1, 2, 15, 166, 2253, 34860, 592549, 10828938, 209868510, 4273308410, 90816552106, 2004641983826, 45791082809343, 1079342545547998, 26193557661047655, 653283080573467694, 16720129397788274155, 438610481782905122800
OFFSET
1,2
LINKS
FORMULA
G.f. satisfies: x = A( x - 2*A(x)^2 + A(A(x))^3 ).
...
G.f. satisfies: A_{n}(x) = A_{n+1}(x) - 2*A_{n+2}(x)^2 + A_{n+3}(x)^3 where A_{n+1}(x) = A_{n}(A(x)) denotes iteration with A_0(x)=x.
...
Given g.f. A(x), A(x)/x is the unique solution to variable A in the infinite system of simultaneous equations starting with:
. A = 1 + 2xB^2 - x^2*C^3;
. B = A + 2xC^2 - x^2*D^3;
. C = B + 2xD^2 - x^2*E^3;
. D = C + 2xE^2 - x^2*F^3; ...
also B = A(A(x))/x, C = A(A(A(x)))/x, D = A(A(A(A(x))))/x, etc.
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 15*x^3 + 166*x^4 + 2253*x^5 + 34860*x^6 +...
Coefficients in the iterations A_{n}(x), n=1..9, of A(x) begin:
A_1: [1, 2, 15, 166, 2253, 34860, 592549, 10828938, ...];
A_2: [1, 4, 38, 490, 7473, 127274, 2349323, 46176042, ...];
A_3: [1, 6, 69, 1020, 17380, 325672, 6545871, 139035872, ...];
A_4: [1, 8, 108, 1804, 34078, 699716, 15287390, 350846310, ...];
A_5: [1, 10, 155, 2890, 60055, 1344140, 31807669, 786868272, ...];
A_6: [1, 12, 210, 4326, 98183, 2382590, 60814113, 1616326636, ...];
A_7: [1, 14, 273, 6160, 151718, 3971464, 108878847, 3097957506, ...];
A_8: [1, 16, 344, 8440, 224300, 6303752, 184875900, 5611606932, ...];
A_9: [1, 18, 423, 11214, 319953, 9612876, 300464469, 9696526206,...].
Coefficients in functions: x = A(x) - 2*A_2(x)^2 + A_3(x)^3 begin:
(A_1)^1: [1, 2, 15, 166, 2253, 34860, 592549, 10828938, ...];
(A_2)^2: [0, 1,. 8,. 92, 1284, 20310, 351572,. 6524886, ...];
(A_3)^3: [0, 0,. 1,. 18,. 315,. 5760, 110595,. 2220834, ...].
Coefficients in functions: A(x) = A_2(x) - 2*A_3(x)^2 +A_4(x)^3 begin:
(A_2)^1: [1, 4, 38, 490, 7473, 127274, 2349323, 46176042, ...];
(A_3)^2: [0, 1, 12, 174, 2868,. 51761, 1000664, 20438646, ...];
(A_4)^3: [0, 0,. 1,. 24,. 516,. 11108,. 244554,. 5530188, ...].
Coefficients in functions: A_2(x) = A_3(x) -2*A_4(x)^2 +A_5(x)^3 begin:
(A_3)^1: [1, 6, 69, 1020, 17380, 325672, 6545871, 139035872, ...];
(A_4)^2: [0, 1, 16,. 280,. 5336, 108684, 2334344,. 52385500, ...];
(A_5)^3: [0, 0,. 1,.. 30,.. 765,. 18970,. 472140,. 11911170, ...].
PROG
(PARI) {a(n)=local(A=x); if(n<1, 0, for(i=1, n, A=serreverse(x - 2*(A+x*O(x^n))^2+subst(A, x, A+x*O(x^n))^3)); polcoeff(A, n))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 29 2010
EXTENSIONS
Formula corrected by Paul D. Hanna, May 29 2010
STATUS
approved